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Preface 

Artificial neural networks are a form of artificial intelligence that have 
the capability of learning, growing, and adapting within dynamic 
environments. With the ability to learn and adapt, artificial neural networks 
introduce new potential solutions and approaches to some of the more 
challenging problems that the United States faces as it pursues the vision of 
space exploration. For instance, one of the areas of potential problems is in 
air and ground vehicle control. To be successful on manned missions to 
Mars and the Moon, intelligent adaptive systems, such as neural networks, 
may be needed to assist in crew operations to accommodate an ever 
changing environment. The major obstacle to deploying such highly 
complex systems is the verification and validation of these systems. 

The need is being recognized by organizations such as NASA, that the 
supporting function of verification and validation must be brought to bear 
for neural network systems to gain the necessary acceptance within their 
respective problem domains. As the facility responsible for assuring 
software safety, reliability, and quality of programs and missions, the NASA 
Independent Verification and Validation (IV&V) Facility will be 
increasingly challenged to certify and evaluate software systems that contain 
neural network technologies. The NASA IV&V Facility has recognized the 
need and importance of neural network technology as it is becoming more 
feasible for use in future space applications. To address this need, the 
NASA rV&V Facility sponsored the Institute for Scientific Research, Inc. 
(ISR) under Research Grant NAGS-12069 through the NASA Goddard 
Space Flight Center, to research and develop methodologies for the 
independent verification and validation of artificial neural networks. 



This book is a result of three years of research conducted for the NASA 
IV&V Facility and examines some of the more promising methods and 
procedures for the verification and validation of artificial neural networks 
and adaptive systems. This book does not endorse artificial neural networks 
as the perfect solution, but instead disseminates the methods and procedures 
for verifying and validating these highly complex systems so that they can 
be used in safety-critical and mission-critical applications. The methods and 
procedures presented in this book were chosen because of their applicability, 
technology maturity level, technical feasibility, and usability in the 
verification and validation of neural networks. 

The NASA IV&V Facility is working to be at the forefront of software 
safety and assurance for major NASA programs. This book is an excellent 
tool for preparing NASA IV&V and other V&V practitioners to assure 
neural network software systems for future NASA missions. 

Mr. Nelson Keeler 

Director, NASA Independent Verification and Validation Facility 
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Chapter 1 

BACKGROUND OF THE VERIFICATION AND 
VALIDATION OF NEURAL NETWORKS 

Spire T. Skias 
Institute for Scientific Research, Inc. 

\. INTRODUCTION 

This book is an introduction to the methods and procedures that have 
proven to be successful for the verification and validation (V&V) of 
artificial neural networks used in safety-critical or mission-critical 
applications. Although the methods and procedures discussed are oriented 
toward artificial neural networks, some of them have also shown to be 
usable for V&V of generic adaptive artificial intelligent systems. 
Throughout this book, an example of a safety-critical and mission-critical 
intelligent flight control system is used to demonstrate the applicability of 
the presented methods and procedures. This chapter provides a brief 
introduction to artificial neural networks, verification and validation, and an 
overview of the Intelligent Flight Control Systems (IPCS) project, which 
was used as the test scenario for the methods and procedures in this book. 

1.1 What are Artificial Neural Networks? 

An artificial neural network, or simply neural network, is a type of 
artificial intelligence (computer system) that attempts to mimic the way the 
human brain processes and stores information. It works by creating 
connections between mathematical processing elements, called neurons. 
Knowledge is encoded into the network through the strength of the 
connections between different neurons, called weights, and by creating 
groups, or layers, of neurons that work in parallel. The system learns 
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through a process of determining the number of neurons or nodes and 
adjusting the weights for the connections based upon training data. In 
supervised learning, the training data is composed of input-output pairs. A 
neural network tries to find a function which, when given the inputs, 
produces the outputs. Through repeated application of training data, the 
network then approximates a function for that input domain. There are two 
main types of neural networks,//xe^i (non-adaptive), and dynamic (adaptive). 

Fixed neural networks, sometimes referred to as Pre-Trained Neural 
Networks (PTNN), are those that have undergone training and then become 
set. The internal structure of the network remains unchanged during 
operation. After training is complete, all weights, connections, and node 
configurations remain the same, and the network reduces to a repeatable 
fijnction. A common use of a fixed neural network might be a classification 
system to identify malformed products on a manufacturing line where the 
definition of an undesirable characteristic would not change and the network 
would be expected to perform the same classification repeatedly. 

Dynamic neural networks, sometimes referred to as Online Learning 
Neural Networks (OLNN), are never fixed in that the system continues to 
develop throughout its life. An OLNN is continuously adapting to current 
data, changing its internal structure of neurons and weights. OLNNs are 
employed in situations where a system must learn new information while in 
use. This is usefiil where unforeseen scenarios occur, such as aircraft 
failures, or when input domains change over time, such as stock market 
analysis. 

1,2 Historical Highlights of Artificial Neural Network 
Development 

The origin of artificial neural networks stems from research of the human 
brain. The basic component of the brain, the neuron, was discovered in 
1836. In addition to a nucleus, the neuron cell has two specialized 
appendages: dendrites, which receive impulses from other neurons, and an 
axon to carry signals to other neurons. The gap between dendrites and axons 
is called a synapse as shown in Fig. 1-1. 

Functionally, the neuron acts as a multi-input/single-output unit. A 
single neuron can have several neighbors connect to it and bring in electrical 
signals across the synapses and through the dendrites while it alone can 
connect to one other neuron via the axon. Within the brain, all of the 
neurons connect to one other via, and work together in, what can be 
considered a network of neural cells. 
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Figure 1-1. Diagi'am of a Biological Neuron 

The neuron performs a summation of the electrical signals arriving at its 
dendrites. This summation is compared against a threshold to determine if 
the neuron shall excite (referred to as firing), resulting in a generation of a 
signal to the dendrite of another neuron. In the late 19̂*̂  century, input 
signals into a neuron were found to be subject to attenuation in the synapses, 
meaning the synapses helped to control the strength of the electrical signal 
passed into the neuron. 

The modern era of neural network research and development began with 
the classic work of W.S. McCulloch, a psychiatrist and neuroanatomist, and 
W. Pitts, a mathematical prodigy, associated with the University of Chicago. 
With their classic 1943 paper, "A Logical Calculus of the Ideas Immanent in 
Nervous Activity," they united the fields of neurophysiology and 
mathematical logic [McCulloch 1943]. In particular, they showed that a 
model of a biological neural network could, in principle, calculate any 
computable function. 

In 1949, Donald Hebb, a psychologist at McGill University in Canada, 
published a novel postulate of neural learning: the effectiveness of a synapse 
to transfer a signal between two neurons is increased by repeated activation 
across that synapse [Hebb 1949]. This theory, also known as "Hebb's 
Rule," explained the physiological concept of synaptic modification, the 
increase or decrease of a neuron's response to electrical sdmulus. This 
corresponds to the use of weighted connections between the neurons of an 
artificial neural network and gave rise to the use of techniques in adjusting 
these weights during learning. 

Hebb's work influenced Marvin Minsky, who would later go on to found 
the MIT Artificial Intelligence Laboratory in 1959. While a student at 
Princeton in 1954, Minsky developed his thesis on "Theory of Neural-
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Analog Reinforcement Systems and Its Application to the Brain-Model 
Problem" [Minsky 1954]. Minsky's book Computation: Finite and Infinite 
Machines [Minsky 1967] extended the 1943 results of McCulloch and Pitts 
by explaining them in the context of automata theory and the theory of 
computation. 

During this same period, Frank Rosenblatt introduced as a new approach 
to pattern recognition, the perceptron, culminating in his perceptron 
convergence theorem [Rosenblatt I960]. The perceptron represented a 
significant step over previous attempts at artificial neural networks because 
it introduced the idea of auto-learning frequently occurring patterns. In the 
same year, Bernard Widrow and Marcian Hoff introduced the least mean-
square algorithm and formulated the ADaptive LINear Element (ADALINE) 
[Widrow I960]. The AD ALINE network used weighting on the inputs into 
a neuron for pattern classification; it also could take continuous data instead 
of the predominantly binary inputs used by other networks, including the 
perceptron. 

But even with these new emerging network architectures, the research 
field was about to collapse. In their book "Perceptrons" [Minsky 1969], 
Minsky and Seymour Papert mathematically demonstrated some 
fundamental limitations on single-layer networks like the perceptron. They 
also expressed their doubt that multi-layer versions could overcome them. 
These limitations deflated the hype surrounding the great potential of neural 
network technology and led to the decline of continued funding for neural 
network research across the next couple decades (i.e. the Dark Ages, in Fig. 
2-1). 

Even though interest in neural networks waned, there were several 
researchers still working actively in the field. In the 1970s, von der 
Malsburg [von der Malsburg 1973] introduced the Self-Organizing Map 
(SOM). Later, with D.J. Willshaw [Willshaw 1976], he further developed an 
association of SOMs with topologically ordered maps in the brain. Then in 
1980, Grossburg built upon this with a new principle of self-organization 
known as adaptive resonance theory (ART), which basically involves a 
bottom-up recognition layer and a top-down generative layer [Grossburg 
1980]. Later, in 1982, Tuevo Kohonen introduced the development of 
SOMs based on one- or two-dimensional lattice structures [Kohonen 1982]. 

In 1982, J.J. Hopfield introduced the use of an energy function in 
formulating a new way of understanding the computation performed by 
recurrent networks with symmetric synaptic connections [Hopfield 1982]. 
This new perspective, based on energy principles, resulted in attracted many 
researchers from other scientific disciplines, such as physics, to explore and 
contribute to the field of neural networks. The Hopfield paper also was the 
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first to explicitly make the case for storing information in dynamically stable 
networks. 

In 1983, Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick 1983] introduced a 
new principle for solving combinatorial optimization problems called 
simulated annealing, which is rooted in statistical mechanics. Building upon 
this approach, Ackley, Hinton, and Sejnowski [Ackley 1985] developed a 
stochastic machine known as the Boltzmann machine, which was the first 
successfijl realization of a multilayer neural network. This work with the 
Boltzmann machine provided the foundation for the linking of neural 
networks to belief networks [Pearl 1988] and, in particular, for the 
development of sigmoid belief networks by Neal [Neal 1992]. 

In 1986, D.E. Rumelhart and J.L. McClellan, in their monumental two-
volume work Parallel Distributed Processing: Explorations in the 
Microstructure of Cognition [Rumelhart 1986], introduced the back-
propagation algorithm, which has emerged as the most widely used learning 
algorithm for training multilayer perceptrons. 

In 1988, D.S. Broomhead and D. Lowe introduced an alternative to 
multilayer perceptrons with their layered feed-forward networks based on 
radial basis functions (RBF). This work has led to significant efforts to link 
the design of neural networks to the areas of numerical analysis methods and 
linear adaptive filters [Broomhead 1988]. 

For a more comprehensive historical analysis of significant achievements 
in the field of neural networks, the reader is referred to the "Historical 
Notes" section at the end of Chapter 1 in Simon Haykin's Neural Networks: 
A Comprehensive Foundation [Haykin 1999]. 

1.3 Neural Network Applications 

NASA [DFRC 2004], the Department of Defense (DoD) [Johnson 2002], 
the Department of Energy (DOE) [Basher 2003], the Federal Aviation 
Administration (FAA) [Steck 2003], the Food and Drug Administration 
(FDA) [Rodvold 2001], and private companies such as Goodrich Aerospace 
[6] are currently considering approving neural networks for use in mission-
and safety-critical systems. These agencies are encountering neural 
networks being utilized in applications such as flight control systems, 
medical devices, and process management systems. These high assurance 
neural network applications require rigorous verification and validation 
techniques. Given that traditional techniques are not entirely suitable for the 
V&V of neural networks, new and practical techniques and supporting tools 
must be developed. 

One application of particular interest is the Intelligent Aircraft. There are 
several organizations investigating the use of neural networks in aircraft. 
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though the majority of this work remains in the realms of research and 
experimental aircraft. The trend for this type of technology has been to start 
within research, apply the concepts to military vehicles, and then finally 
transition the use of new technology to commercial aircraft. An excellent 
example of this trend is the Intelligent Flight Control Systems (IPCS) Project 
being conducted at the NASA Dryden Plight Research Center (DPRC). 

1.3.1 Intelligent Flight Control Systems 

The IPCS Project is a collaborative effort among the NASA DPRC, the 
NASA Ames Research Center (ARC), Boeing Phantom Works, ISR, and 
West Virginia University (WVU). 

The goal of the IPCS Project is to develop and flight-demonstrate a flight 
control concept that can efficiently identify aircraft stability and control 
characteristics using neural networks, and utilize this information to 
optimize aircraft performance in both normal and simulated failure 
conditions. A secondary goal is to develop the processes to verify and 
validate neural networks for use in flight-critical applications. The flight 
project results will be utilized in an overall strategy aimed at advancing 
neural network flight control technology to new aerospace systems designs 
including civil and military aircraft, reusable launch vehicles, uninhabited 
vehicles, and space vehicles. 

The intelligent flight control system was first tested in flight on the 
NASA P-15 Advanced Control Technology for Integrated Vehicles 
(ACTIVE) aircraft. This aircraft, shown in Pig. 1-2, has been highly 
modified from a standard P-15 configuration to include canard control 
surfaces, thrust vectoring nozzles, and a digital fly-by-wire flight control 
system. The use of canard surfaces, along with simulated stuck stabilator 
deflections allows the IPCS program to simulate different actuator failures 
during flight. 

Two types of neural networks make up the components to the flrst 
generation (GENl) intelligent flight control scheme. A pre-trained neural 
network component provides the baseline approximation of the stability and 
control derivatives of the aircraft. This neural network is composed of 34 
separate multilayer perceptrons, with some of the networks' outputs 
combined to form the derivatives. The networks were trained with two 
different training techniques: a modification of Active Selection and the 
Levenberg-Marquardt algorithm. The second neural network integrated into 
the GENl intelligent flight control system is a highly advanced neural 
network called a Dynamic Cell Structure (DCS). The DCS is a member of a 
group of neural networks known as self-organizing maps (SOMs). The DCS 
algorithm, implemented in the GENl system by NASA ARC Jorgensen 
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[1997], was originally developed by Bruske and Sommer [1994] and is a 
derivative of work by Fritzke [1994] combined with competitive Hebbian 
learning by Martinez [1993]. 

Figure 1-2. NASA IPCS Project P-15 ACTIVE Aircraft 

Flight tests of the online learning network will demonstrate a flight 
control mode for a damaged fighter or transport aircraft that can return the 
aircraft safely to base. 

Since ensuring pilot and aircraft safety along with overall mission 
success is a success criterion for this program, each of the participating 
organizations contributed toward the development of a V&V guide 
[Mackall 2002], "Verification and Validation of Neural Networks for 
Aerospace Systems." This guide was written to assist NASA DFRC in the 
development of research experiments that use neural networks. It is a first 
approach toward extending existing V&V standards to cover fixed and 
adaptive neural networks. 

1.4 Verification and Validation 

Before software finds its way into safety-critical applications, users of 
these systems must be assured of highly reliable operation. In non-critical 
systems, failure may result in loss of work, profits, or mere inconvenience. 
In systems where high reliability is a requirement, failures can result in 
massive destruction of loss of human life. 

One industry with a high reliability/low failure requirement is aviation. 
Civilian airliners require highly reliable systems to transport millions of 
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passengers daily. The Federal Aviation Administration, the ruling authority 
in the U.S., has mandated a failure rate of less than 10-9/hour as the 
acceptable occurrence of failures within aircraft systems. This means that 
for every billion hours (roughly 114,000 years) of operation, only one failure 
should occur. 

Other industries with high demand for reliability have adopted similar 
guidelines for acceptable failure rates. Requirements for monitoring systems 
for nuclear power plants are lO""̂  failures per hour of operation. The 
telephone industry commonly cites a limit of 10"̂  failures per hour 
(Customers expect flawless operation from their telephone service provider, 
so the failure rate is set even higher than the nuclear power industry 
guidelines). Phone service should not be interrupted more than two minutes 
per year, though experience says this is difficult to achieve. 

One way to assess the correctness and reliability of a software project is 
to utilize the practices of verification and validation. V&V methods attempt 
to answer two questions concerning the entire software lifecycle of a project: 

Verification: Is the product being built right? 
Validation: Is the right product being built? 

Verification looks at the end result of the software development process 
and evaluates the correctness of the software. It seeks to answer questions 
concerning the adequacy of the processes that went into the system 
development. Verification also analyzes the outcome of tests conducted on 
the system that result in metrics that measure the system's expected 
reliability. 

Validation examines the system from a different perspective. Given the 
original intended uses and needs for the system, and all of the changes and 
modifications made to those specifications during the software development, 
does the end product still ftilfill those requirements? Validation seeks to 
ensure that all requirements are met throughout the development of the 
system. These can include statements on system reliability, failure rates, and 
other issues important in safety-critical systems. 

The software lifecycle can be separated into several stages: concept, 
requirements, design, implementation, testing, operation, and maintenance. 
Due to the visibility of the results from testing, a common misconception is 
that V&V occurs only during the testing. However, to be adequate in any 
kind of system development each stage must contain its own assurance 
practices. 

The Institute of Electrical and Electronics Engineers published IEEE 
Standard 1012-1998 (and 1012a-1998) to provide a V&V template for 
software developers. The IEEE Standard for Software Verification and 
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Validation can be used across all processes, activities, and tasks of the 
software lifecycle. The standard identifies key activities that can be 
conducted within each stage, such as documentation and assessments of 
risks, hazards, and requirements traceability from stage to stage. 

Current V&V techniques, including those described within the IEEE 
standard, are not well equipped to handle adaptive systems like neural 
networks. The use of neural networks, especially within safety-critical 
systems, has been increasing over the past 15 years because they prove very 
useful in systems that contain ill-defined non-linear functions. 

Instead of being programmed and designed in a traditional sense, neural 
networks are "taught" using a learning algorithm and a set of training data. 
Because of their adaptation, neural networks are considered a "black box". 
Its response may not be predictable or well defined within all regions of the 
input space. 

Of particular concern is the trustworthiness and acceptability of dynamic 
neural networks that continue to adapt or evolve after the system is 
deployed. While some OLNNs may be given a priori knowledge of their 
input domain, the adaptation that they undergo offers no guarantee that the 
system is stable or continues to meet the original objectives. 

The V&V technique commonly applied to neural networks is brute force 
testing. This is accomplished by the repeated application of training data, 
followed by an application of testing data to determine whether the neural 
network is acceptable. Some systems may undergo intensive simulations at 
the component level and perhaps at the system level as well. However, these 
may be no better than "best guesses" toward a system analysis. 

In assessing a safety-critical neural network system, a V&V expert must 
know what to look for with a neural network and how to analyze the results. 
Many questions face the analyst regarding the network's implementation: 

• Has the network learned the correct data, or has it learned something else 
that correlates closely to the data? 

• Has the network converged to the global minimum or a local minimum? 
• How will the network handle situations when data is presented to it 

outside of the training set or unique from previous training data? 
• Is there a quantifiable metric to describe the network's "memory" or data 

retention? 
• Is the network making use of the right set of input parameters for the 

problem domain? 

One oft-cited story [Skapura 1996] recounts a neural network pattern 
recognition system that was being developed for the army to identify the 
presence of enemy tanks. Once trained, the system appeared to work 
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perfectly, able to identify tanks in the testing samples and in a completely 
separate data set. When taken to the field, however, the system failed. After 
analysis, it was discovered that the system was actually identifying qualities 
of the pictures it was being presented with: every photo in the test set that 
had a tank hidden within it was taken on a cloudy day; coincidentally, every 
photo without a tank was taken on a clear day. The system had learned to 
identify cloudy skies and not tanks. This bias had been undetected. 

It is stories like this that push the software industry to establish V&V for 
neural network processes. As the development of neural networks is often 
considered more of an art form than a science, so too might it be said about 
V&V of neural networks. Like the IEEE standard, developers need well-
defined practices that they can use in their own systems. 

2. SUMMARY 

This book is an introduction to the methods and procedures that have 
proven to be successftil for the V&V of artificial neural networks used in 
safety-critical or mission-critical applications. 

There are two types of neural networks discussed in this book, fixed 
(non-adaptive) and dynamic (adaptive). Fixed neural networks are trained 
before deployment and do not change. Dynamic neural networks learn 
during deployment. 

Artificial neural networks stem from research of the human brain. 
Neural networks are made up of neurons (or nodes), connections, weights, 
and layers. The first development of experimental artificial neural networks 
dates back to 1943 with research conducted by W.S. McCulloch. Since then, 
neural networks have made their way into safety-critical and mission-critical 
applications, such as intelligent flight control. 

V&V is the formal process by which to test and examine a system for 
dependability, reliability, and assurance. Verification tries to answer the 
question "Is the product being built right?" Validation tries to answer the 
question "Is the right product being built?" 

The methods and procedures presented in this book have been evaluated 
on a real-world intelligent flight control application for the IPCS project at 
NASA DFRC. The IPCS project uses adaptive neural networks to control 
and stabilize an P-15 research aircraft in catastrophic conditions for pilot 
assistance. 
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AUGMENTATION OF CURRENT 
VERIFICATION AND VALIDATION PRACTICES 

Kareem Ammar, Laura Pullum, Brian J. Taylor 
Institute for Scientific Research, Inc. 

1. INTRODUCTION 

Many agencies, including the NASA IV&V Facility use the IEEE Standard 
for Software Verification and Validation (IEEE 1012-1998) [IEEE 1998] as 
a basis for verification and validation (V&V) activities. Standards like IEEE 
1012-1998 are sufficient for traditional software development, but are 
inadequate for adaptive systems that can change their implementation and 
behavior over time. Faults may manifest themselves because of autonomous 
changes and this may introduce problems that were not present during 
design or testing. 

Given the fault handling and other capabilities of neural networks, their 
use in the control systems of advanced avionics, aeronautics and other 
safety- and mission-critical systems is seriously being pursued. Along with 
the capabilities come challenges in the verification and validation (V&V) of 
these systems, as well as the need for V&V practitioner guidance. Neural 
networks that continue to learn while the system is in operation require 
additional steps for proper software assurance. 

This chapter highlights research that was performed to determine the 
gaps in the traditional standards and guidelines for performing V&V when 
applying them to adaptive neural network systems. Previous work in the 
area of guidance for the V&V of neural network systems consisted primarily 
of efforts by NASA Ames Research Center and NASA Dryden Flight 
Research Center [Mackall 2002, 2003]. The NASA reports provide valuable 
inputs into what should be done to verify and validate adaptive aerospace 
systems. The authors of these reports align their guidance with the ISO/IEC 
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12207 [lEEE/EIA 1998], a standard that addresses the implementation of 
general software lifecycle processes, and offer guidance specific to adaptive 
aerospace systems. 

Based on the research described in this chapter, the Institute for Scientific 
Research, Inc. (ISR) has developed a comprehensive guidance document 
[ISR 2005] aligned with the IEEE 1012-1998 to assist the V&V practitioner 
in evaluating general neural network systems. The goal of the guidance 
document is to provide relevant and applicable guidance for the V&V 
practitioner when faced with an adaptive system with a neural network 
component. This chapter will discuss the approach to the research, gaps 
found in the V&V standards when faced with a neural network system to 
V&V, and several augmentations to V&V processes to satisfy these gaps. 
Specifically, V&V methods are described in this chapter that address 
adaptive system requirements, neural network software requirements, neural 
network design, enhanced configuration management, modified lifecycle 
models, and neural network testing. 

!•! Combining Previous Research and Standards 

In order to identify what needed to be done to augment current practices 
to accommodate the V&V of neural networks, current standards and 
practices were examined. The documents examined during the research for 
this chapter included: IEEE 1012-1998, the IEEE ISO/IEC 12207, the 
NASA Ames and Dryden reports, and a sample software verification and 
validation plan (SVVP). (Note that before the release of this book the IEEE 
1012 - 2004 became available. The guidance document produced from this 
research remains applicable to the majority of this updated standard.) 

The first step in the research approach was to create a mapping between 
the ISO/IEC 12207 to IEEE 1012-1998. This bi-directional mapping 
allowed for gap analysis to be preformed with all available information. 

The guidance developed by NASA Ames and NASA Dryden, though 
fairly top-level, provided an initial input into this effort. The NASA reports 
were aligned with ISO/IEC 12207 standard and so the mapping of ISO/IEC 
12207 to IEEE 1012-1998 helped to map the Ames and Dryden guidance to 
IEEE 1012-1998. Also, in this step the sample Software Verification and 
Validation Plan was examined. The SVVP of the Airborne Research Test 
System II (ARTS II) of the Intelligent Flight Control System (IPCS) 
[Casdorph 2000, ISR 2003] provided insights into one implementation of a 
V&V plan for a neural network system. The IPCS was an excellent case 
study as it utilized safety- and mission-critical online adaptive neural 
networks. This text contains several examples from the IPCS Program to 
illustrate augmented V&V methods. 
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These mappings were then combined to determine the coverage of the 
V&V of neural networks problem space and to form a framework for the 
general V&V guidance document. The guidance document is the final 
product of the ISR's research initiative. The steps of this research plan, 
including intermediate and final results, are illustrated in Fig. 2-1. 

IEEE 1012-1998 

ISO/IEC 12207 

^ 1 j _J 

IPCS SWP 

1012/12207 
Map 

Ames, Dryden 
Reports 

Practitioner 
Guidance 

> 

— 

^ 

Framework 
Document 

t 
ISR IWNN 
Research 

^ 
Guidance 
Document 

Figure 2-1. Research Plan - Interim and Final Results 

1,2 Guidance for the Independent Verification and 
Validation of Neural Networks 

The guidance document, Guidance for the Independent Verification and 
Validation of Neural Networks [ISR 2005], outlines general augmentations 
to lifecycle processes to assist the V&V practitioner. The guidance 
document provides a detailed listing of all IEEE 1012-1998 V&V tasking 
and provides augmentations for the V&V neural networks for every task. 
The guidance document also introduces novel V&V tasks when 
augmentations to IEEE 1012-1998 tasks are not sufficient. Finally, the 
guidance provides supporting examples from IPCS. In summary, the 
guidance document provides assistance to the V&V practitioner in designing 
V&V methodologies for neural networks. 

The guidance document is generally aligned with the IEEE 1012-1998 in 
terms of section enumeration. The alignment provides the V&V practitioner 
the ability to quickly reference information on specific areas of interest. The 
document is organized into five sections. Section 1 is the overview of the 
document. Section 2 contains the important references for the document. 
Section 3 contains definitions, abbreviations, and conventions. Section 4 
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provides a summarized list of areas of consideration for neural 
network/adaptive systems. Section 5 provides detailed guidance for all 
lifecycle processes, activities and tasks related neural network and adaptive 
systems. 

For a few tasks, no significant the guidance was needed. For many tasks, 
additional guidance is required to address the adaptive system. In some 
instances the guidance document provided additional V&V tasks that were 
not found in IEEE 1012-1998. These include Neural Network Design 
Evaluation, Adaptive System and Operational Monitoring Performance 
Assessment, Periodic Test Execution and Verification, Proposed Knowledge 
Change Assessment, and Configuration File Change Assessment. 

2. AUGMENTATIONS TO CURRENT V&V 
STANDARDS FOR ADAPTIVE SYSTEMS 

The remainder of this chapter addresses several augmentations to the 
V&V processes. Discussions on specific techniques can be found in later 
chapters. 

As a note, V&V processes are tailored to specific applications through 
the selection of software integrity levels to plan for appropriate V&V 
tasking. The additional methods outlined in this chapter are not intended to 
replace existing processes, but are designed to provide suggestions to the 
V&V practitioner to augment an established V&V process to address 
specific characteristics of neural networks. Use of the following techniques 
should be based upon assigned software integrity levels, and thus the safety-
and mission-criticality level of the system. This section does not try to 
identify at what level these techniques should be employed. V&V 
practitioners should also be aware that many of these techniques mentioned 
here still maturing, and the cost associated with developing the technique to 
a technology readiness level usable by the project could highly influence 
how quickly the project might adopt the technique. 

2,1 Enhanced Configuration Management for Neural 
Networks 

Typically, configuration management identifies configuration items, 
implements version control upon baselined configuration items, and 
describes processes to establish new baselines. A configuration item is 
usually software, documentation, or data. In IEEE 1012-1998, configuration 
management assessment of a project is conducted by determining the 
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completeness and adequacy of documentation produced that describe the 
configuration management process. Since adaptive systems have an added 
component of knowledge that is not present in conventional software, the 
configuration management processes must describe the methods neural 
networks use to obtain knowledge as well as the neural network knowledge 
itself 

The neural network design is often an iterative process. The process 
cycles through the steps of design-train-test multiple times. The neural 
network undergoes changes as it attempts to learn what the system designers 
intend. If this process is not tracked via configuration management, the 
project may lose the ability to repeat the design. Neural network validation 
techniques such as cross validation or bootstrapping should also be tracked 
through configuration management. 

Neural network developers can also choose to modify the structure of the 
neural network. Based upon the evaluation of neural network performance, a 
designer might want to change the architecture, add additional neurons and 
neuron layers to the architecture, or change the algorithms the network uses 
to learn or grow. Alterations in structure, function, and architecture must be 
captured through configuration management. 

Pre-trained neural networks rely on training sets to learn. After using a 
set of training data, the network begins to adjust internal parameters as it 
migrates to learning the features of the training data. The V&V practitioner 
should ensure that these training sets are tracked through configuration 
management. It is equally important to track the order and frequency in 
which training sets are applied to a neural network. Capturing the neural 
network during training is also useful. The partial learning in the neural 
networks allows for an evaluation of how the network is changing, and 
allows for developers to revert to an earlier state if the current neural 
network is lacking in performance. 

The considerations outlined for pre-trained neural networks can be 
applied to online adaptive neural networks. Online adaptive neural networks 
are usually initialized with parameters that control variants such as learning 
rate and initial weight values. This configuration data should be under 
stringent version control, since slight alterations in parameters may 
considerably alter the way the neural network learns and performs. 

2.2 Adaptive System Requirements Vi&V 

The V&V practitioner evaluates the system requirements early in the 
lifecycle. The system requirements are validated to ensure they can be 
satisfied by the defined technologies, methods and algorithms defined for the 
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project, and the system requirements verified for their consistency to the 
needs of the user. 

The feasibility of the requirements determines if the defined technologies 
can fulfill the requirements adequately and efficiently. In order to evaluate if 
any specifications requiring the use of an adaptive system can meet the 
overall system requirements, the practitioner must first evaluate whether an 
adaptive system or a neural network is appropriate. There are numerous 
types of neural networks. Neural networks may be either supervised or 
unsupervised. They may have feed-forward architecture or feedback 
architecture. Different neural networks are applied to different problem 
domains. While no complete taxonomy exists that defines appropriate neural 
network architecture selection, there are general guidelines. These guidelines 
are described in Chapter 4. 

To establish consistency with the needs of the recipient of the system, the 
needs must be clearly documented. For an adaptive system, the user needs 
should be represented as goals depicting system behavior and characteristics 
from a very high level of abstraction. The high-level goals are first stated in 
early documents and are then traceable through systems requirements and 
software requirements. To ensure complete coverage of user needs, system 
and software requirements are traced to high-level goals. 

High-level goals of an adaptive can be difficult to write very early in the 
lifecycle. They should address two aspects of the system: 

• How the adaptive system acquires knowledge and acts on that knowledge. 
(Control) 

• What knowledge the adaptive system should acquire. (Knowledge) 

Table 2-1 provides an example of high-level goals for an online adaptive 
neural network used in an intelligent flight control application. The table 
also shows traceability to system requirements. From high-level goals the 
developer will be able to understand the nature of the system. Once high-
level goals are established for a project, consistency of the system 
requirements to the user needs can then be easily established. 

23 Neural Network Software Requirements V&V 

Neural networks are based on statistics and mathematics. Requirements 
describing neural networks should be written in formal mathematical 
notation to describe the functionality of the neural network and intended 
knowledge. The V&V practitioner will need to make sure software 
requirements are readable and it may be necessary to provide appendices to 
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software requirement documentation that includes a brief mathematical 
background explaining some of the specifications. 

Table 2-1. Example of Adaptive System High-Level Goals 
High-Level Goal Classification Software 

Requirement ID 
Software Requirement 
Description 

The IPCS system 
shall include a safety 
monitor that safely 
limits the online 
learning neural 
network commands 

The IPCS system 
shall use an online 
learning neural 
network to adjust the 
feedback errors to 
achieve desired 
system behavior in 
the presence of off 
nominal behavior or 
failures. 

Control 1.1.1.1 [01 ] The system shall[01 ] include a 
safety monitor that safely 
limits the online neural 
network commands and 
outputs or reverts to the 
conventional (non-research) 
flight control system in the 
case of a command that could 
damage the vehicle, precipitate 
departure fi*om controlled 
flight, or injure or incapacitate 
the pilot. 

1.1.1.1 [02] The safety monitor shall[02] 
limit the authority of the 
experimental control laws to 
ensure that the control 
commands remain within the 
allowed loads limits of the 
NASA vehicle. 
The system shall[01] use an 
online learning neural network 
to adjust the feedback errors to 
achieve desired system 
behavior in the presence of off 
nominal behavior or failures. 

2.2.2.2[02] When the neural network is 
off, the adjustment to the 
feedback shall[02] be zero, and 
the adaptation shall be 
disabled. 

Knowledge 2.2.2.2[01] 

The notion of control requirements and knowledge requirements 
discussed within Section 2.2 is used in the next two section to further 
explore neural network requirement analysis. 

2.3.1 Neural Network Control Requirements 

The following paragraphs outline some of the more common areas that 
the V&V practitioner may address when assessing completeness of the 
software control requirements specifications for an adaptive system or a 
neural network. 
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The convergence time and precision of a neural network should be 
outlined in the software requirements. Convergence refers to a global 
minimization of the neural network error. The developers should be able to 
prove that the adaptive system can converge within a specified amount of 
time. This is a necessity for safety-critical systems that adapt in real time. 

Many neural networks increase the amount of memory use when running 
in real-time. The increase in memory use may be attributed to an increase in 
the number of nodes that account for new operational conditions or an 
increase in connections or associations between nodes. The software 
requirements should specify the precise conditions under which a neural 
network will be allowed to grow and constraints on the growth such as 
maximum memory size. 

In a safety- or mission-critical system, developers should use operational 
monitors or run-time monitors to periodically check the conformance of the 
adaptive system to the requirements. If an operational monitor is used, then 
high-level descriptions of operational monitors must be included in the 
requirements specifications. Different types of operational monitoring 
approaches are discussed in Chapter 10. 

Input and output requirements for neural networks are crucial since input 
data has the greatest influence on adaptation. Requirements that describe 
input scaling, gains, and limits are common for neural networks. The V&V 
practitioner should also verify the input and output data and the amount of 
acceptable error. 

The learning algorithm used within the neural network should also be 
defined with the requirements. A learning algorithm is used to adapt the 
neural network based on an update law. The V&V practitioner should verify 
the description of the learning algorithm. Examples of learning algorithms 
include calculating the mean squared error between the desired output and 
the actual outputs, Newton methods, and Levenberg-Marquardt [Bishop 
1996]. 

2.3.2 Neural Network Knowledge Requirements 

With an adaptive neural network system the states of neural network are 
unknown prior to operation. One of the motivations for employing an 
adaptive control system is the versatility to react to unknown operating 
conditions. Requirements related to what the neural network must and must 
not know are important in determining valid operation of the system. 
However, specifics of neural network knowledge are difficult to establish 
before the input domain is clearly understood and a preliminary neural 
network is constructed. As a result, software requirements should depict 
general knowledge of an adaptive neural network. 
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A neural network is initialized before it begins to learn upon input data. 
This method should be captured in the software requirements. Neural 
networks may be initialized from a data file, software module, or another 
software system. Purely adaptive online neural networks are initialized by 
randomizing the weights, or by setting the weight values to some constant. 

For fixed neural networks or neural networks with knowledge prior to 
deployment, the requirements should specify the type of training data used. 
The requirements should depict the source of the training data, data ranges 
and attributes, and metrics of expected performance of the neural network 
upon the training data. 

Software requirements specifications should impose limitations on neural 
network knowledge. These requirements should set specific knowledge 
limits or describe undesirable behavior. Software requirements may describe 
what the adaptive system shall not do as well as what the adaptive system 
must do. 

A method to developing requirements depicting neural network 
knowledge is to describe the knowledge in the form of rules. Initially, 
domain experts can compose symbolic knowledge from the target problem 
domain. Neural network developers may then transform this knowledge into 
rules that is used in rule extraction and rule insertion techniques. Information 
attained from these processes can provide a sufficient level of detail for 
neural network knowledge requirements. A more detailed explanation of rule 
extraction is provided in Chapter 8. 

2.4 Neural Network Design Vi&V 

After the neural network is designed to some desirable state, the V&V 
practitioner must evaluate the design based on the criteria of correctness, 
consistency, completeness, accuracy, readability, and testability. Although 
these criteria may seem identical to traditional software design evaluation 
outlined by IEEE 1012-1998, the methods for evaluating a neural network 
system vary greatly from the methods used for traditional software. 
Consequently, a new task needs to be considered to describe methods to 
V&V the neural network design. 

In evaluating the neural network design, the V&V practitioner must focus 
on areas such as neural network structure, neural network performance 
criteria, training and testing data, training processes, and operational 
monitors. Each of these areas should be described in sufficient detail in 
design documentation. Because of the extra significance given to the neural 
network design, it is recommended that the project team develop a special 
appendix to the software design document for the neural network. Another 
option is the creation of a stand-alone neural network design document. 
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Many people of varied backgrounds participate in a project, so the 
documented design should contain enough information to convey the 
purpose, rationale, mathematics, and development of the neural network that 
anyone not familiar with neural networks in general would be able to 
understand it. Essential information would include a summary of all terms 
used for the specific neural network, as well as visualization techniques to 
aid understand such as diagrams or flowcharts. 

Many of the ideas discussed in this section should appear in the 
documentation. There should be sections describing the functions that 
comprise the neural network, how the neural network is to learn and grow, 
and specific design details for input pre-processing, output post-processing. 

Based upon the system design, there may be other considerations for 
inclusion into the design. Some systems may require that the neural network 
perform data recording for later analysis. Others might make use of multiple 
neural networks in a form of N-version programming for neural networks. 
All of these specifics should be present in the documentation. 

Neural networks have several design elements that must be evaluated for 
correctness. These include the neural network structure that is composed of 
the specific neural network architecture and the internal neural network 
parameters. Design documentation should include a clear description of the 
neural network nodes, the connection matrix between the nodes, weights, 
activation functions, growth functions, learning functions, hidden layers, 
inputs, and outputs. 

While some of these elements can number into the hundreds and 
thousands, each individual element need not be documented. Instead, the 
focus should be on descriptive qualities like the number of nodes, the 
number of connections per node, what mathematical functions occur for 
each node, etc. 

Neural network architectures such as multilayer perceptron, self-
organizing map, radial basis function, recurrent, and Hopfield are used in 
very different problem domains. V&V must validate that the selection 
processes for the neural network architecture is based upon solid theoretical 
or empirical evidence. The selection process may also be based upon 
comparison studies, recommendation from experts in the field, or past 
experiences within a similar problem domain. V&V should ensure that the 
reasons are clearly expressed within concept documentation. 

Neural network designs must have sufficient acceptance and rejection 
criteria well documented. System testers need to have metrics to determine 
the acceptability of the system. These criteria should describe specific 
knowledge, stability, and performance constraints. Other possible 
performance criteria may include necessary operating frequencies (i.e., the 
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neural network must produce an output at a rate of 40Hz), and acceptable 
variance qualities of the output signal. 

V&V must evaluate the accuracy of the neural network design by 
ensuring that the training set conforms to system accuracy requirements and 
physical laws and that the knowledge acquisition has adequate precision for 
system requirements. Training and testing data need to be considered as 
design elements. Analysis on this data should address if this data is 
appropriate for the intended usage of the system and if it is precise enough 
for expected results. The origins of the training and testing data should be 
evaluated to remove any possible problems from corrupt data collection, 
inappropriate sources of data collection, and problems associated with 
combining previous separate data sets into a single larger set. 

The training process itself must undergo evaluation for correctness. The 
training process should be clearly documented and describe why it is 
appropriate for meeting the project needs. This includes identification of 
relevant training data sets, justification for the choice of the data sets, and 
consideration of the correct data formats for the training data. If multiple 
data sets are used, and certain data sets are emphasized during training more 
than others, this should also show up in the documentation with justification. 
A description of configuration management as used on the training process 
should also be present. Information here can include the training data 
configuration items that were use, the procedures employed for applying the 
training data configuration items, and identification and tracking of 
evaluation metrics used throughout the process. 

If the system makes use of operational monitors (see Chapter 10), their 
design needs to be a part of the documentation. The project can decide to 
include these within the neural network documents, to make the operational 
monitor design a separate document, or to include it within the overall 
software design document. Operational monitor design can influence the 
neural network design and vice versa, the neural network design can 
influence the operational monitor design. Because of this, the design 
documentation needs to contain detailed information on the performance and 
interface of any operational monitors in order to minimize problems during 
integration with the neural network. 

2.5 Modified Lifecycle for Developing Neural Networks 

The neural network development lifecycle is different from traditional 
lifecycle models. It does not follow the basic waterfall methodology nor 
does it follow a pure spiral lifecycle model. Instead neural network 
development utilizes parts of both methodologies. The V&V practitioner 
should understand the details of the neural network lifecycle model used and 
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ensure conformance of development activities to the model. The following 
sections discuss three distinct models for neural network development. 

2.5.1 Common Neural Network Development Model 

A common method for development of a neural network is an iterative 
cycle that is performed until the neural network has been proven adequate by 
some quantifiable measure. The stages in this process are the design, 
training, and testing of the neural network. 

During the design stage, the neural network developer chooses the 
architecture, and the initial number of neurons and layers. The developer 
then establishes a connection matrix between all neurons, selects the 
learning algorithm and possible growing algorithms, and determines the 
initial values for internal parameters including weights and constants 
controlling the algorithms. Subsequent passes through the design stage may 
involve major overhauls of the design or may simply fine-tune neural 
network parameters. 

During the training stage, training data is used by the neural network to 
learn. Depending on the nature of the problem, the neural network may be 
designed to approximate a function describing the training data, or may learn 
relationships between input and output data within the training set for 
classification. Training sets can be significant in size with several thousand 
training examples. After each example, the learning algorithm continues to 
adjust the network structure. The goal of the training stage is that after 
training the neural network to some state, the internal neural network 
parameters are developed enough to satisfy designated requirements and 
objectives 

After completing a pass through the training data, a separate set of data 
called the testing data is used. This set of data has similar properties to the 
training data, but with examples the neural network has never seen. By using 
new data, the performance of the network can be measured without influence 
of examples that were used for training. Results from testing may indicate 
that another pass through the design-train-test cycle is necessary. Usually, 
the neural network developers have some target metric value they wish to 
achieve such as a 95% classification accuracy rate on new data. Until the 
metric values are met, the design-train-test cycle is iterated. 

2.5.2 Rodvold's Neural Network Development Model 

Rodvold [1999] identified that many current neural network development 
processes tend to be developed through empirical processes rather than 
through precise construction and training methods. To rectify this problem. 
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Rodvold constructed the nested loop model for neural network development. 
The model was constructed from common neural network development 
processes, and contains elements from both the waterfall lifecycle 
development model and the spiral lifecycle development model. Rodvold's 
model, shown in Fig. 2-2, is composed of five steps. 

Step 1: Develop a set of neural network requirements, goals, and 
constraints into a document labeled Network Performance Specification. 

Step 2: Assemble the data that will be used for training the neural 
network including data sources, original format of data, and 
modifications performed on the data. This step results in the Data 
Analysis Document. 

Step 3: Training and testing loops are an iterative process in which the 
neural network architecture is developed and trained. The first loop. 
Variations of Artificial Neural Network (ANN) Topologies, involves 
changing the neural network architectural parameters. The middle loop. 
Variations of ANN Paradigms, involves modifications to the type of 
neural network used. The outer loop. Selection and Combination of ANN 
Input Neurons, concerns altering neural network inputs. All design and 
training from this step is documented in the Network Training Summary. 

Step 4: Network deployment is completed through commercial tools, 
automatic code generation provided by commercial tools, or by saving 
raw neural network data to file with code to load and execute the neural 
network. The deployment of the neural network is documented in the 
Network Integration Document. 

Step 5: Independent testing and verification produces the Network Test 
Plan and the Data Analysis Document. This step also involves creating 
the Network Test Report, which summarizes of all tests performed. 
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Figure 2-2. Critical Neural Network Development Process Model [Rodvold 2001 

2.5.3 Kurd's Neural Network Development Model 

A major problem for the V&V practitioner, when faced with a safety-
critical neural network, is the inability to effectively perform white-box 
analysis. The Safety Lifecycle [Kurd 2003] is a process for developing 
neural networks considering the safety criteria that must be enforced to 
justify safety operation of a neural network. This model ties hazard analysis 
into the development of the neural network's knowledge and specifically 
addresses neural networks developed for safety-critical applications. Fig. 2-3 
illustrates the development and safety lifecycles. There are three levels in the 
diagram: 
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Figure 2-3. Safety Lifecycle for Hybrid Neural Networks [Kurd 2003] 

The Symbolic Level is associated with the symbolic knowledge 
representations. The Translation Level is where the symbolic knowledge is 
modified into knowledge that is represented through rules for rule extraction 
and insertion. The Neural Learning Level trains the neural network through 
empirical data formulated from knowledge from the translation level. 

Brief descriptions of the stages in the development model which traverse 
the above levels are as follows: 

• Determine neural network requirements and goals, 
• Collect symbolic sub-initial knowledge from domain experts, 
• Compose initial knowledge for the neural network from sub-initial 

knowledge, 
• Train the neural network on empirical data produced from the initial 

knowledge, 
• Extract knowledge from neural network and refine this knowledge, and 
• Train the neural network with a new refined knowledge set. 

2.6 Neural Network Testing 

Testing of an online learning neural network is difficult. Formal method 
testing techniques such as model checking and theorem proving are not 
practical given the characteristics of many neural networks. Theorem 
proving is too difficult in complex problem domains. For online adaptive 
neural networks, model checking would be inadequate since the neural 
network is non-deterministic at run-time. Instead the system tester is left to 
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augmenting normal testing practices as well as incorporating some new 
ones. 

Like traditional software testing, the component or unit-level testing of a 
neural network system will focus upon determining the correct 
implementation of the system, but from a ftinction or module perspective. 
This is true regardless of the neural network being adaptive or fixed. 

Since a neural network is a statistical tool, the functions will be of a 
mathematical nature. Testing will need to ensure that these fiinctions return 
values for all possible inputs and that the values returned are consistent with 
their mathematical nature. A project may make use of approximations or 
table lookups to implement these functions. Testing should concentrate on 
how accurate these functions are and how errors in the implementation can 
ripple through other software modules and the possible system level effects 
from this. 

Interface testing, another aspect to testing that exists for non-adaptive 
software, can require more concern for adaptive software. Neural networks 
are very capable of performing an approximation to a solution given 
partially noisy and partially imprecise data. When analyzing the inputs and 
outputs, practitioners should inspect the pre- and post-processing of the 
inputs looking for poor performance or improper implementations. An 
example is a smoothing function that isn't smoothing the data as it was 
intended. Data interpolation algorithms may also contribute to generating 
poor data that is masked by the neural network. The system testers may 
know that the neural network is performing with a very minor error, but if an 
error in the pre-processing is corrected, the system performance could 
improve. 

The robustness of the neural network may work as a disadvantage to the 
system tester. If allowed to adapt during system usage, neural networks can 
overcome incorrectly provided inputs. This can happen if one person or 
team develops a module that produces input for the neural network and 
another person or team develops the neural network module. If the data is 
switched between the module and the neural network, and the neural 
network adapts, it can compensate for this deficiency, possibly with only a 
minor error that the team regards as negligible. 

Two new aspects of testing that are normally not considered are the 
neural network knowledge and structure. Structure testing determines 
whether the design is the most optimal at learning what is intended, 
compared to other designs. Knowledge testing would investigate what the 
neural network has already learned and how well it has learned it. 

Typically, when the neural network undergoes design-train-test 
development, the network is tested after it passes through an iteration of 
training. There is typically a performance metric, usually an error function. 
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associated with how well the neural network handles the data found in the 
test set. Over time, this error metric should decrease towards zero 
representing the neural network has learned the exact function it is to 
perform. 

System testers may want to make sure these iterative testing stages are 
tracked and the error values recorded. By looking at these error values over 
time, it can provide evidence that the neural network design is improving 
and is better than any of the previous other states the design was in. The 
tester may not actually be responsible for conducting this kind of test, they 
just make sure the results are collected and analyzed. 

Since structure testing is testing if the current design is better than 
previous designs, the results do not need to prove that the current design is 
the best possible design achievable. It only needs to prove that the design is 
better than it was previously. While it would be very useful to know that the 
current design is the absolute best, trying to show this through testing would 
be impractical. 

Knowledge testing is perhaps the hardest area for neural network analysis 
because it involves evaluating whether the neural network is learning what 
the designers want it to learn. This goes beyond the use of a performance 
metric like the error function mentioned before. An error metric only tests 
for one particular input set; it does not reflect how the neural network would 
perform for a larger set of inputs. 

Testing knowledge may require the use of rule extraction techniques to 
translate the network knowledge into a set of symbolic rules. The rules 
present a more tangible representation; they can be individually tested, used 
within existing testing tools, and can facilitate other analysis methods. 
Further discussion of this approach can be found in Chapter 8. 

Another method for testing knowledge, though limited and often times 
impractical, is to use a brute force approach that tests the neural network for 
a very large set of possible inputs. By looking at the performance over a 
greater range, some sense of how the neural network will perform for an 
input domain can be gathered. This kind of testing may also fall into 
reliability assessment or sensitivity analysis where minute differences within 
the input domain are studied to determine if the neural network could behave 
erroneously. The tester may need to rely upon test data generation 
techniques to assist with this kind of evaluation. Consult Chapter 9 for 
further details. 
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3. SUMMARY 

This chapter has revealed several gaps in current V&V practices for 
adaptive systems, and has shown augmentations to traditional V&V 
processes to satisfy these gaps. Through the mapping of software V&V 
standards, process guidance, previous research, and IPCS documentation, a 
guidance document was formulated to augment current V&V practices to 
accommodate the characteristics of neural networks or adaptive systems. 
The guidance document [ISR 2005] embodies a comprehensive 
methodology for the V&V of neural networks and gives the V&V 
practitioner direction on how to augment established V&V processes to 
address neural networks or adaptive components within a system. 
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Chapter 3 

RISK AND HAZARD ANALYSIS FOR NEURAL 
NETWORK SYSTEMS 

Laura Pullum, Brian J. Taylor 
Institute for Scientific Research, Inc. 

\. INTRODUCTION 

The IEEE Standard for Software Verification and Validation [IEEE 
1998] includes activities for risk and hazard analyses. The standard is 
intended to be general in nature and apply to all types of software. However, 
specific guidance for risk and hazard analysis related to the special 
characteristics of neural network software is required, and is not presently 
available. Smidts [2001], Chillarege [1992], and others provide general 
frameworks and taxonomies for software probabilistic risk assessment. 
These, too, apply in general to software, but are not specific, nor applicable 
in some instances, to neural networks. The goal of the research described in 
this chapter is to provide a suggested research path for risk assessment for 
neural network systems and an example failure modes and effects analysis 
(FMEA) for practitioner use. In the following sections, we present the 
results for the risk assessment of neural network systems (Section 2.0) and 
neural network FMEA research (Section 3.0). 

2. NEURAL NETWORK RISK ASSESSMENT 

The processes, activities, and tasks in the IEEE verification and 
validation (V&V) standard that are related to risk and hazard analyses are 
listed in Fig. 3-1 and Fig. 3-2. We note the required activities, and what is 
recommended by our research and by the Ames/Dryden V&V guidance 
documents [Mackall 2002, 2003] in the paragraphs below. 
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Process: Development | 
Acdvify: ConctptV&V \ 

Hazard 
Analysis 
Tasks 

Risk 
Analysis 
Tasks 

Analyze potential hazards to and from the conceptual system. The analysis 1 
shall 1) identify potential system hazards, 2) assess severity of each hazard, 
3) assess probability of each hazard; and 4) identify mitigation strategies for 
each hazard. 
Identify the technical and management risks. Provide recommendations to 
eliminate, reduce, or mitigate the risks. 

AcdvUy: Requirements V&V | 

Hazard 
Analysis 
Tasks 

Risk 
Analysis 
Tasks 

Determine software contributions to system hazards. The hazard analysis 1 
shall a) identify the sofhvare requirements that contribute to each system 
hazard; and b) validate that the software addresses, controls, or mitigates each 
hazard. 
Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the risks. 

Acdvitp: Design V&V | 
Hazard 
Analysis 
Tasks 
Risk 
Analysis 
[Tasks 

Verify that logic design and associated data elements correctly implement the 1 
critical requirements and introduce no new hazards. Update the hazard 
analysis. 
Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the risks. 

1 Activity: Implementation V&V | 
Hazard 
Analysis 
Tasks 
Risk 
Analysis 
1 Tasks 

Verify that the implementation and associated data elements correctly 1 
implement the critical requirements and introduce no new hazards. Update 
hazard analysis. 
Review and update risk analysis using prior task reports. Provide 1 
recommendations to eliminate, reduce or mitigate the risks. 

Activify: Test V&y \ 
Hazard 
Analysis 
Tasks 
Risk 
Analysis 
[Tasks 

Verify that test instrumentation does not introduce new hazards. Update the 1 
hazard analysis. 

Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the risks. 

1 Activity: Installation and Checkout V&V 
Hazard 
Analysis 
Tasks 
Risk 
Analysis 
[Tasks 

Verify that the installation procedures and installation environment does not 
introduce new hazards. Update the hazard analysis. 

Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the risks. 

Figure 3-1. IEEE Std. 1012 Hazard and Risk Analyses Tasks (Part 1) 
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Hazard 
Analysis 
Tasks 
Risk 
Analysis 
Tasks 

Hazard 
Analysis 
Tasks 
Risk 
Analysis 
[Tasks 

Process: Operation 
Activity: Operation V&V 

Verify that the operating procedures and operational environment does not 
introduce new hazards. Update the hazard analysis. 

Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the nsks. 

Process: Maintenance 
Acdvlty: Maintenance V&V 

Verify that software modifications correctly implement the critical 
requirements and introduce no new hazards. Update the hazard analysis. 

Review and update risk analysis using prior task reports. Provide 
recommendations to eliminate, reduce, or mitigate the nsks. 

Figure 3-2. IEEE Std. 1012 Hazard and Risk Analyses Tasks (Part 2) 

2.1 Concept V&V Hazard and Risk Analysis Tasks 

During the Concept V&V activity, the scope of hazard and risk analysis 
tasks is typically at the conceptual system level. 

A preliminary hazard analysis can be conducted by use of hazards and 
operability studies (HAZOPS). Given a neural network system that adapts 
during operation, then the following potential hazards should be considered 
for the HAZOPS: 

1. The neural network does not adapt. 
2. The neural network adapts, but is unable to reach convergence. 
3. The neural network adapts and converges, but converges to an incorrect 

output. 
4. The neural network converges to a correct state, but cannot do so in the 

required time. 
5. The neural network grows beyond available system resources during 

adaptation. 

Identification of technical and management risks at the conceptual 
system level is a task that is essentially unaltered by whether or not neural 
networks are used. In addition, recommendations for risk elimination, 
reduction and mitigation are on the system level and black box "non-view" 
into the neural network operations and risks would produce similar strategies 
for a system with or without neural networks. 

In terms of assessing management risk, the practitioner should look at 
project team member expertise with neural network development. Teams 
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who have never developed neural networks will face schedule and budget 
risks. They may not have enough experience to know how to efficiently 
design the neural network and may spend extra resources developing the 
network and identifying effective ways of testing and validating the neural 
network system. 

From the technical risk standpoint, the analysis needs to concentrate on 
the justification for the use of a neural network solution. Questions that 
investigate technical risk may ask if a neural network system is an 
appropriate solution given the problem being solved, if the neural networks 
should be online adaptive or not, and what types of built in safety the system 
will need. 

2,2 Requirements V&V Hazard and Risk Analysis Tasks 

At the requirements stage, hazard and risk analyses for systems 
employing neural networks start to differ from that for systems employing 
more conventional software. There will be requirements specifically 
addressing the neural network component(s) and these requirements can be 
used, as with non-neural network software requirements, to support the 
hazard and risk analysis tasks during this stage. Better means of specifying 
neural network requirements will aid in determining their contribution to 
system hazards and in validating the control or mitigation of each hazard. At 
this stage, a top-level fault model of the neural network can be initiated. The 
fault model is used to provide a foundation for risk assessment methods such 
as HAZOPS, FMEA, and fault tree analysis (FTA). Refer to Section 3.0 for 
additional information. 

Risk identification for neural network systems during the requirements 
stage can be more difficult than the same identification conducted for 
traditional software systems. Examples of areas of risk that can be 
considered during this stage include: 

1. Risks introduced by the specification and collection of training and 
testing data 

Risks from the specification of training and testing data for neural 
network development can fall into either technical or management risks. For 
management risks, there may be concerns associated with the time it will 
take to collect these data sets and the ability of the project to track and 
identify the data sets once collected. 

A technical risk associated with the training data is the lack of a 
sufficiently large and rich enough set of data to allow for proper knowledge 
acquisition. In other words, the neural network will not be able to 
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approximate the desired function well. The project team may need to 
consider means of increasing the size of the dataset such as test data 
generation. 

The normal training-testing approach to neural network systems may 
leave an inadequate size of testing data, especially in the case of safety- and 
mission-critical systems. Typically, the entire available data set is split into 
75% training and 25% testing data. That limit on the testing set may not 
allow proper system evaluation. Activities like reliability assessment and 
robustness analysis may require on the order of tens of thousands of test 
cases. If the project does not prepare for some of these concerns in their 
specifications of testing data, associated risks need to be documented. 

2. Risks introduced by specification of neural network performance 

If neural network performance requirements are incorrectly stated or are 
too difficult to obtain, a project may spend a longer time developing the 
neural network to meet the performance criteria. A result is that schedules 
slip and budgets overrun. Possible ways to mitigate this risk are the use of 
reliable neural network training tools, inclusion of knowledgeable neural 
network developers on the team, and the establishment of well-defined 
performance criteria. 

2.3 Design V&V Hazard and Risk Analysis Tasks 

At the design stage, hazard analysis tasks include verifying that logic 
design and associated data elements correctly implement the critical 
requirements and introduce no new hazards. Risk analysis tasks at this stage 
include providing recommendations to eliminate, reduce, or mitigate the 
risks. Details can now be added to the neural network fault model and 
subsequently more detailed FMEA and FTA can be performed. Additional 
research and example analyses of FMEA and FTA for neural networks are 
required. This chapter provides an example FMEA for the Intelligent Flight 
Control System (IFCS) next generation (GEN2). Refer to Section 3.0 for 
additional information. Lyapunov stability analysis can be used to prove 
convergence (see Chapter 5) and safety monitors can be used to reduce or 
mitigate risks related to the use of neural networks in real-time safety critical 
systems. Both Ames/Dryden guidance documents [Mackall 2002, 2003] 
provide recommendations for the design V&V stage, although no specific 
recommendations are made for hazard or risk analysis. 

Neural networks undergo a design-train-test development that may be 
iterated any number of times. For the Design V&V stage, hazard analysis 
should only be concerned with the design aspect of the development. This 
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includes the design of the neural network architecture, size, intended use, 
collection of training-testing data, etc. The train-test aspects are better 
considered under Implementation V&V Hazard and Risk Analysis Tasks in 
Section 2.4. 

Hazards introduced due to the design of the neural network include: 

• Training data set does not model intended goals. 
• The collection of training and test data sets is not tracked under 

configuration management and is not described in design documentation. 
• Lack of adequate testing data to achieve component-level project-

specific certification standards. 
• Neural network architecture is not completely specified. 
• The implementation of the network prior to training is incorrect (initial 

number of neurons, connection matrices, growing/learning functions, or 
activation functions contain errors). 

• Inappropriate growing/learning algorithm is selected, causing sub-
optimal knowledge acquisition. 

Some of the management risks that could be encountered during the 
design phase include cost impact associated with the need to purchase neural 
network development environments or specialized testing tools and suites. 
There could also be schedule risks due to the project teams lack of 
experience with developing neural network solutions. 

Technical risks include insufficient training and testing data. With 
insufficient training data, the project may not be able to generalize or 
specialize the neural network learning. With insufficient testing data, the 
project may lack the ability to prove correctness, safety and reliability of the 
neural network. Both training and testing data must represent the entire data 
domain, rather than just a few constrained examples. Especially in the case 
of safety- and mission-critical applications, the ability to demonstrate the 
performance of the neural network algorithm throughout the application 
domain is necessary for system acceptance. 

Another technical risk arises due to the proper selection of the neural 
network base architecture, given the problem being solved. Selecting an 
appropriate neural network algorithm impacts the feasibility of system 
design and implementation. The process of selection is not well documented 
in the literature. 

Projects may be tempted to ignore software engineering best practices 
because they don't easily apply to the neural network. It has often been said 
of neural network development that design is more of an art than a science. 
If the development team does not take all the necessary precautions such as 
controlling the training data, recording design and training procedures, then 
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it is possible that the end result, no matter how appropriate a solution, will be 
an unexplainable and unlikely to be repeated should it become necessary. 

2.4 Implementation V&V Hazard and Risk Analysis 
Tasks 

At the implementation stage, hazard analysis tasks include verifying that 
the implementation and associated data elements correctly implement the 
critical requirements and introduce no new hazards. Risk analysis tasks at 
this stage include providing recommendations to eliminate, reduce or 
mitigate the risks. Risk assessment models, such as the fault model, FMEA, 
hazard analysis, and FTA, can be updated per implementation details. 
Sensitivity analysis and fault injection may be useful tools to examine the 
performance of risk mitigation techniques. Both Ames/Dryden guidance 
documents [Mackall 2002, 2003] provide recommendations for the 
implementation V&V stage, although no specific recommendations are 
made for hazard or risk analysis. 

During the implementation phase, hazard analysis should focus on those 
hazards affected or introduced through the learning of the training data by 
the neural network. The actual design of the neural network was dealt with 
in the design stage. Here, the focus needs to be on the knowledge and how 
well the knowledge was acquired. Some examples of hazards include: 

• Through learning and/or growing, the neural network structure exceeds 
the computational limitations of the system. 

• Neural network takes too long to adapt to new stimuli. 
• The neural network never reaches a point of stability. The neural 

network performance oscillates around the designated success criteria 
metric but never achieves the intended metric. 

• Neural network is over-generalized and cannot provide a suitable 
solution to the specific problem. 

• Neural network is too specialized and cannot provide a general solution 
for the problem domain. 

• Observable behavior of the neural network is not predictable or 
repeatable. 

A management risk associated with the implementation stage is the 
potential loss of time due to a poor understanding of effective training 
strategies. If the neural network learning never converges, the project team 
may spend too much time trying to achieve a desired performance measure 
and never come close. Another management risk is the loss of version 
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control of the neural network training process, leaving the project unable to 
repeat a training process or later inspect it when looking for problems. 

Technical risks include a lack of sufficient training or testing data, 
especially to meet the needs of rigorous testing and reliability assessment. 
Another possible technical risk occurs when the neural network designers 
have trained a neural network to meet performance criteria, but they fail to 
adequately test the neural network across the entire operational profile. In 
this case, the network may seem to be performing correctly, but in certain 
situations that are not considered, the network actually performs quite 
poorly. 

2.5 Test Vi&V Hazard and Risk Analysis Tasks 

At the test stage, hazard analysis tasks include verifying that test 
instrumentation does not introduce new hazards. Risk analysis tasks at this 
stage include providing recommendations to eliminate, reduce, or mitigate 
the risks. Fault injection testing may be used to examine the performance of 
risk mitigation techniques. Faults to inject may be found in the fault model 
details. This may also be called FMEA testing and is suggested in the 
Ames/Dryden guidance documents [Mackall 2002, 2003]. 

During the testing stage, the risks and hazards usually relate to accepting 
a neural network system inappropriately. This could occur through the use 
of testing techniques or simulations that fail to adequately exercise the 
neural network. Other examples include: 

• Failure to examine the training data for completeness and correctness. 
• Failure to review input selection (ensuring the input choices are correct, 

based upon an acceptable technique like principal component analysis, 
etc.). 

• Failure to review input preprocessing and output post-processing for 
correctness. 

• The test procedures described in the test plans do not properly assess 
neural network performance criteria such as stability and convergence. 

• For software-in-the-loop simulations (SILS), the test cases do not 
accurately reflect how the adaptive component performs within the entire 
system. 

• For hardware-in-the-loop simulations (HILS), near-identical versions of 
the hardware do not accurately reflect performance of the true hardware. 

The most significant technical risk during testing, especially for that of 
an adaptive neural network system with high integrity levels, is a 
catastrophic failure of an accepted system. Management risks can be 
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associated with the loss of effectiveness due to the unavailability of proper 
testing tools and simulations and the time it takes to utilize the testing tools 
and simulations that are available. 

2.6 Installation and Checkout V&V Hazard and Risk 
Analysis Tasks 

At the installation and checkout stage, hazard analysis must consider the 
contributions to system hazards introduced from incompleteness and 
incompatibility. 

If the neural network system requires some environment in which to 
operate, a potential hazard is the lack of delivery of this environment with 
the installation package. Another possible area of omission is the failure to 
deliver checkcases that will exercise the system after installation to make 
sure that the installation did not introduce any kind of error. If the system 
makes use of real-time operational monitors, the monitors need to be a part 
of the complete package as well. 

Incompatibility can be introduced when the target environment is not 
similar to the development environment. The interface between modules 
providing input or accepting output from the neural network may be 
different. Computer hardware attributes like processor size and speed may 
be different, introducing performance issues. There may be multiple threads 
running on the same board as the neural network software, competing for 
resources and impeding the network's operation. 

In general, the risks encountered during the installation and checkout 
phase are based on whether or not the system operates properly. Other risks 
must be of concern in this phase especially when the neural network is part 
of a safety-critical system with the potential to terminate the mission or harm 
humans. In such a system, a minor incident can put humans at risk and 
escalate into budget cuts, schedule extensions, program delays and even the 
cancellation of a program. 

2.7 Operation Vi&V Hazard and Risk Analysis Tasks 

At the operation stage, hazard analysis tasks include verifying that the 
operating procedures and operational environment does not introduce new 
hazards. Risk analysis tasks during this stage include providing 
recommendations to eliminate, reduce, or mitigate the risks. It is highly 
recommended that V&V evaluate the use of operational monitors (see 
Chapter 10), stability and convergence analysis (see Chapter 5), and risk 
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assessment techniques (used throughout the Hfecycle) (see Section 3.0) prior 
to the system under development reaching the Operation V&V phase. 

With a neural network system that continues to learn and adapt during 
system operation, hazard analysis is more significant than that of traditional 
software. The reason is that it is often assumed with traditional software, 
any hazards that might be identified already exist prior to the system being 
deployed. However, with an adaptive system, new hazards can be 
introduced based upon what data comes into the system and thus how the 
system learns. Example of hazards include: 

• Operating procedures are inconsistent with the user documentation or 
with system requirements. 

• Operating conditions differ from those intended by system developers. 
• Input data is received from a source that was not originally intended. 
• Computational resource limits are approached or exceeded (as may 

happen with growing neural networks that add more neurons and 
connections over time). 

• Operational monitors function inappropriately as either too restrictive or 
not restrictive enough. 

The technical risks encountered during the Operation phase are similar to 
those in the Installation and Checkout phase. The system either does not 
operate or operates improperly which is directly related to risks of adverse 
impacts on schedule and budget. 

The use of operational monitors may be a part of a wider risk mitigation 
strategy. If so, the specifics of their usage within mitigation should be well 
defined. This may include contingency planning when operational monitors 
indicate system performance problems. 

2.8 Maintenance V&V Hazard and Risk Analysis Tasks 

At the Maintenance stage, hazard analysis tasks include verifying that 
software modifications correctly implement the critical requirements and 
introduce no new hazards. Based upon what is carried out during 
maintenance, updating the hazard analysis is recommended. For example, if 
the design is unaltered but the neural network knowledge is changed through 
re-training, the hazard analysis should consider the suggestions found within 
the Implementation V&V Hazard Analysis section, but it need not 
reconsider the Design V&V suggestions. Likewise, risk analysis tasks at 
this stage include providing recommendations to eliminate, reduce, or 
mitigate risks based upon what was modified. 
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3. FAILURE MODES AND EFFECTS ANALYSIS 
FOR NEURAL NETWORKS 

To study risk assessment for neural networks, we must resolve the issue 
of how a neural network becomes defective and the nature of the defects. 
This is included in a fault model. The next issue is applying the fault model 
to the various tools used in risk assessment - namely FMEA, FTA, and 
HAZOPs. The research reported in this section developed a fault model for 
the multi-layer perceptron (MLP) neural network and examined the use of 
that fault model to enable FMEA. 

3.1 Fault Model 

A fault model describes the types of faults a system can develop, 
including where and how those faults occur in the system. The MLP neural 
network architecture is considered for examination because of its use in the 
IFCS [Rumelhart 1986]. An abstract model for the MLP neural network is 
illustrated in Fig. 3-3. It provides a graphical representation of, as well as 
the operation and training equations governing, the system. 

From this abstract definition of the neural network, we examine the 
entities in the model for possible fault locations. Both training and operation 
phases are considered in the discussion below of the entities and potential 
fault locations. The following information is derived from Bolt's work on 
neural network fault tolerance [Bolt 1992]. 

Outputs 

Inputs 

Operation: 

Output Oi = f\Y.^ijOj 
\ j J 

such that feeding unitsy already evaluated and 
where/; is a differentiable monotonic function. 

Training: 

Weight change is A ^.j = TJ^.QJ 

where for output units Si = iti ~ ouf \ ILwik Ok 

and for hidden units St- f \1L Wik Ok JZ 5i Wn 

Figure 3-3. Multi-Layer Perceptron Abstract Model [Bolt 1992] 
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• Weights Wij - for the operational phase (fixed values in the MLP network 
once training has finished) and for the training phase. For simplicity, 
bias values, Ot, are viewed as weights on connections from a dummy unit 
that is permanently active. 

• Threshold Functions ft - a fault in a threshold function will alter the 
transformation of the activation to an output value in some manner. This 
will affect both training and operational phases. 

• Derivative of Threshold Functions f[ - this fault will affect the system 
only during the training phase. It is identified as a separate fault since its 
function is generally different to that of ft. 

• Constant Values - faults affecting any constant values are fixed by 
definition. An example during the training phase is the learning rate, //. 

• Target Values tt - these are not included in the constant values above 
since it is conceivable that a MLP network may be trained on data that is 
modified as time progresses, e.g., [Miikkulainen 1988]. 

• Topology - the connectivity of the neural network could easily be subject 
to faults in various ways, such as the loss of a connection between two 
units. 

There are some additional entities that must be considered for inclusion 
in the fault model because of their functional role in MLP neural network 
operation, even though their lifetime is strictly limited. For example, delta 
values. Si, have to be kept at each backward pass so that errors can be 
evaluated at hidden units. These additional entities are noted below and are 
derived from Bolt [1992]. 

• Activation Values, ai, where ai is defined as 

Delta Si - faults in these are only relevant during the training phase. 
Weight Change Aw/y - these are the alteration for the stable weight base 
value, and as for 5,, faults are only applicable during the training phase. 

From the fault model, it can be seen that a large number of possible fault 
locations exist for a MLP neural network. However, when the fault 
manifestations are defined, we find that many of them can be discarded from 
consideradon. 
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3,2 Fault Manifestations 

We have identified the entities that may be possible locations for faults 
using the mathematical model of the neural network. The next step is to 
describe the nature of the faults the entities might suffer. We use the 
technique for defining fault manifestations described by Bolt [1992]. First, 
possible faults are defined using the maximization of damage principle. This 
tends to lead to the development of extreme fault modes. The second step 
using information derived from implementation considerations is then 
applied to the fault modes. This has the effect of either restricting a mode's 
effect or ruling it out completely. A set of failure modes for the MLP neural 
network is defined by applying these concepts to the fault model and 
locations described above. 

Weights Wij 

• Wij = 0 causes loss of any partial information that the weight held 
• Wij -^ - Wij weight is multiplied by - 1 ; represents a unit always trying to 

misclassify an input 

OR a saturation limit can be applied on any faulty weight by restricting 
weights to the range [-W, +W]. This suggests the faults: 

• negative wy -^ +W 
• positive Wij —> -W 

Threshold Function 
• Stuck-at-minus-one 

Stuck-at-plus-one • 

Derivative of Threshold Function 
• Stuck-at-plus-one 
• Stuck-at-zero 

Learning Rate 
• r| = 0 typical range (0, 1] 
• r| == its highest possible value 

Target Values 
• ti = value opposite to the fault-free value (the targets generally take only 

the two values at the extreme ends of the threshold function range) 
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Topology 
• Loss of a connection between 2 units 
• Random reconnection of a link to another unit in the network (possibly 

due to a short-circuit) 

• 

Activation Values, a;, and Delta. 6i 
Limit to opposite value OR 
Constrain 6i and ai to a limited range or randomize them 

Weight Change Awj| 
• Only needs to be considered if they are stored temporarily, then they 

would have similar failure modes as those for activation values and 
deltas 

3.3 Fault Example 

The next step is to use the information on failure modes above and 
illustrate its use in performing a failure modes and effects analysis. This 
requires a sample system and for these purposes, the IPCS GEN2 MLP 
neural network is used (Table 3-1). Note that the purpose of the IPCS neural 
network is to reduce system error. 

When the neural network interferes with the proportional-integral 
derivative (FID) error compensation, the resulting system effect is poorer 
flying quality than with dynamic inversion alone. There are various ranges 
of flight quality problems based upon the Cooper/Harper handling qualities 
scale, e.g., 1-3 is acceptable; 4-6 there is a problem in the system and the 
system requires some pilot compensation; and 7-8 the pilot must provide 
considerable compensation to the system. If the neural network failure mode 
is transient, then the system effect is most likely in the 4-6 range. If the 
neural network failure mode is permanent, then the system effect can go to 
the 7-8 range. The table above notes the worst case and assumes no 
operational monitor or other non-PID combination for fault mitigation. 



Risk and Hazard Analysis for Neural Network Systems 

Table 3-1. FMEA for IPCS GEN2 Neural Network 

47 

Neural Network 
Entity 
Weights 

Threshold Function 
(sigmoidal) 

Derivative of 
Threshold Function 

Learning Rate 

Target Values 

Topology 

Failure Modes 

Wij=0 

Wij - > - Wij 

Stuck-at-minus-one 

Stuck-at-plus-one 

Stuck-at-plus-one 

Stuck-at-zero 

Tj = 0 typical range 
(0,1] 

r| = its highest 
possible value 

ti = value opposite to 
the fault-free value 
(the targets generally 
take only the two 
values at the extreme 
ends of the threshold 
function range) 
Loss of a connection 
between 2 units 

Random 
reconnection of a 
link to another unit 
in the network 
(possibly due to a 
short-circuit) 

Local Effect 

Incorrect error 
reduction 

Network instability; 
unable to converge 

Network instability; 
unable to converge 
Network instability; 
unable to converge 
Loss of error fitting 
(sigmoid becomes 
linear) 
No error 
compensation 
No weight change, 
can not 
accommodate 
system error 
Instability, network 
unable to achieve 
local minima (most 
likely) 
Network would 
move away from 
optimum error 
reduction, become 
more erroneous 

Incorrect error 
reduction; loss of 
internal knowledge 
Incorrect error 
reduction; loss of 
internal knowledge 

System Effect 

Poor handling 
qualities (HQ); 
system will 
compensate, but take 
longer to 
compensate than 
without error. 
System instability; 
may lose error 
compensation (LEG) 
totally. May never 
regain good flying 
quality. 
Poor HQ 

Poor HQ 

n.a. 

Poor HQ 

Poor HQ 

LEG 

LEG 

LEG, transient 

LEG, transient 
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Neural Network 
Entity 

Failure Modes Local Effect System Effect 

Activation Values 

Delta 

Weight Change 

Limit to opposite 
value 

Limit to opposite 
value 
Limit to opposite 
value (Consider only 
if they are stored 
temporarily) 

Weights adjust in 
opposite direction 
giving double error 
Weights change in 
the wrong direction 
Takes longer to 
converge 

Poor HQ 

Poor HQ, transient 

Poor HQ 

4. SUMMARY 

Guidance on risk assessment specific to the special characteristics of 
neural network software is required, and this is not presently available. 
General frameworks and taxonomies for software probabilistic risk 
assessment have been proposed, but they are not specific, nor applicable in 
some instances, to neural networks. This chapter, while limited in its 
applicability to every safety- and mission-critical neural network system, 
points out several possible risk assessment techniques as well as useful 
places to begin considering identification of risks and hazards. 
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Chapter 4 

VALIDATION OF NEURAL NETWORKS VIA 
TAXONOMIC EVALUATION 

Brian J. Taylor, James T. Smith 
Institute for Scientific Research, Inc. 

\. INTRODUCTION 

This chapter presents a taxonomic overview of neural network systems 
from multiple perspectives, i.e., a taxonomic view of neural network 
validation. Major characteristics of application problems and their neural 
network solutions are considered. The intent of this material is to aid the 
V&V practitioner with validation, the assessment of the appropriateness of a 
particular neural network-based solution for the problem being solved. 

Validation of a computer system has often been summed up in the 
following question: 

Has the right system been built? 

This chapter considers that question and relates it to neural networks by 
phrasing the question slightly differently: 

Does the system need a neural network? 

In a way, the second question is a form of the first question. When 
considering if the right system has been built, the V&V practitioner should 
consider what constitutes the 'right system' and if a neural network solution 
is a part of that right system. 

Given that a neural network solution is deemed appropriate for the 
project, the next question is almost as important: 

Which neural network architecture is the most appropriate? 
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Addressing these two questions is the focus of this chapter. 
Section 2.1 presents a high-level characterization of the types of 

problems and applications for which neural network technology may be 
deemed appropriate. The major characteristics of such problem domains 
may be divided into three categories: 

1. Adaptive vs. Fixed, 
2. Parallel vs. Sequential, and 
3. Complete vs. Incomplete. 

Section 2.2 focuses upon the relationship and comparison of neural 
networks to other computational models that are employed in the 
development of intelligent systems. General constraints or conditions that 
must be met to effectively use artificial neural networks are provided. A 
series of tables provide a summary of this comparison. 

Table 4-1 [Anderson 1992] presents a high-level comparison of the 
neural network computational model with other prevalent computational 
models. Table 4-2 presents a comparison of neural networks with the other 
major intelligent system paradigms. Finally, Table 4-3 presents a 
comparison that focuses specifically on neural networks and expert systems, 
another widely employed computational model for the development of 
intelligent systems. 

Section 3 outlines the more common artificial neural network 
architectures. They are organized in general categories based upon the type 
of application for which each is appropriate. Most applications of neural 
networks tend to fall into the following five categories: 

1. Predicdon, 
2. Classification, 
3. Data association, 
4. Data conceptualization, and 
5. Data filtering. 

Table 4-4 summarizes the differences between these network categories 
and indicates which of the more common network topologies belong to 
which primary category. The categories support consideration of the various 
networks architectures in terms of how they best match these appHcation 
categories. Also considered are complex systems that incorporate more than 
one of the above categories. 

Section 4 examines some applications in which neural network systems 
have been used. This section provides concrete examples of the previously 
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presented concepts and relationships among various problem domains, 
intelligent systems architectures, etc. 

Four broad areas of application are reviewed: 

1. Pattern Recognition, which includes vision, speech, character 
recognition, target discrimination and recognition. 

2. Signal Analysis, which includes language processing, and overlaps 
(utilizes) pattern recognition. 

3. Robotics, which integrates control systems, pattern recognition, and 
signal analysis. 

4. Expert Systems, which includes complex analysis such as medical 
diagnosis or system diagnosis. 

2. AUTOMATED TAXONOMIC EVALUATION OF 
NEURAL NETWORKS 

This chapter should be seen as a concise literature survey with inclusion 
of the beginning of guidance for the verification and validation (V&V) 
practitioner. Over 50 conference publications, presentations. World Wide 
Web publications and journal articles were collected and analyzed for this 
discussion. The work by Anderson [1992] and Martinez [1989] contain very 
useful information. This research work can form the basis of the discussion 
of the two major questions: 

• Does the system need a neural network? 
• Which neural network architecture is the most appropriate? 

2.1 High-Level Problem Characterization 

The first step towards assessing the selection of a neural network for a 
project may reside with analyzing the problem domain of the entire system 
or specific system that contains the neural network component. By 
analyzing the type of problem being solved, a V&V practitioner can assess 
one of the first questions in regards to the validation of the neural network: 
should a neural network have been used by the project in the first place? 

The major characteristics of problem domains may be divided into three 
categories: 

1. Adaptive vs. Fixed, 
2. Parallel vs. Sequential, and 
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3. Complete vs. Incomplete. 

The following subsections explore each of these major defining features. 
To facilitate evaluation of the appropriateness for a neural network solution, 
the practitioner may first want to study the problem area and to classify it in 
terms of the following features. 

2.1.1 Adaptive vs. Fixed 

An adaptive application is typically one that learns over time and thus 
can continue to change upon receipt of new inputs. Adaptive systems may 
need to accommodate dynamic operating conditions, provide capabilities to 
handle unforeseen events or situations, or learn a specific function that 
cannot be well defined by system developers. On the other hand, a fixed 
application is one where the internal mapping function that identifies a 
specific output with a given input does not change with time. A fixed 
application can be repeatable and have a well-known mathematical function 
to perform. 

2.1.2 Parallel vs. Sequential 

This application feature differentiates between applications that are 
naturally, and thus more efficiently, parallel and those that are more 
naturally sequential. At the lowest level, all applications can be performed 
in a parallel fashion, since all can be represented by simple mapping 
functions. On the other hand, any set can be well ordered and thus 
serialized, according to the Well-Ordering Theorem: [PlanetMath 2004] 

If X is any set whatsoever, then there exists a well ordering of X . The 
well ordering theorem is equivalent to the axiom of choice. 

However, either approach to a particular problem may not always lend 
itself to an efficient realization. Neural networks are fundamentally parallel 
in nature, but the cascading of impulses through a network may be viewed as 
sequential. Consequently, neural networks are dual-hybrids that can be 
viewed functional- and implementation-wise from either perspective for 
different purposes. 

2.1.3 Complete vs. Incomplete 

A given application is termed complete if a specific input-output 
mapping is required for all or nearly all of the permutations of the input 
variables. An example of such an application is integer multiplication where 
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each set of integer inputs produces only one integer output. This mapping of 
output to input is specific for each possible combination of numbers using a 
well-defined procedure for producing the output. 

An incomplete application does not have a mapping for all possible input 
permutations. With incomplete applications, only subsets of input 
permutations have specific output assignments. An example of an 
incomplete application is one that contains input combinations that are 
impossible to obtain or has input combinations that have no relevance or are 
known as 'don't care' states. Rule-based systems and control and decision 
systems can be incomplete. 

The complete-incomplete dichotomy is not perfect. Rather, a spectrum of 
hybrid applications exist that exhibit characteristics of both complete and 
incomplete applications. Pattern recognition systems can be either complete 
or incomplete. A complete pattern recognition problem would be one that 
dealt with color identification given RGB values assigned into one of 255 
bins. An incomplete pattern recognition problem would be one that 
identified only 4-door cars and ignored trucks, 2-door cars, and motorcycles. 

2.1.4 Classification of Applications 

Fig. 4-1 [Martinez 1989] depicts the previously discussed application 
domain characteristics along with an indication of the computational model 
currently considered most effective for that class of application. Martinez 
suggests that neural network models seem most appropriate for application 
domains that are incomplete and adaptive, with neural networks able to fit 
into either the parallel or sequential application. 

2.1.5 V&V Practitioner Considerations on Problem 
Characterization 

Certainly, a project may have an adequate reason for using a neural 
network even if it does not fit well within the incomplete-adaptive-parallel 
or incomplete-adapdve-sequential categories. However, a problem space 
that is otherwise characterized may require further explanation. At this stage 
of the V&V process, the goal for the practitioner should be to intercept the 
project that uses a neural network solution simply because it sounds like a 
good idea. 
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Applicat ion D o m a i n 
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/ \ 
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/ \ / \ 
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/ \ / \ 
Parallel \ Parallel \ Parallel \ Parallel \ 

1 
Neural 

1 Networks 

Sequential 1 Sequential 

Custom Circuit, 

Multiplexors 
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Figure 4-1. Classification of Applications [Martinez 1989] 

2.1.6 Considerations of the Complete Characterization 

Distinctions are necessary to describe the complete problem space: 
simple, moderate, and complex. A simple complete problem is one that 
contains a limited number of input-output matchings. A complex complete 
problem is one that contains, for practical purposes, an unlimited number of 
possible pairings. A moderate complete problem is one that falls between 
these two categories. 

Because processing power and capabilities are always improving, clear 
identification of the differences between simple, moderate, and complex 
may be too difficult. This would be up to the practitioner who would have to 
judge the problem domain. Use of a neural network for a simple, possibly 
even moderately complete problem may be acceptable, but a different 
solution would be needed for a complex complete problem. Perhaps a 
project would be better served through use of multiple neural networks, or a 
combination of neural networks and other technologies, as opposed to a 
single neural network solution. A reduction of the complexity within the 
problem space through conversion to an incomplete problem might simplify 
the application. 
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2.1.7 Considerations of the Incomplete Characterization 

As previously noted in Section 2.1.3, an incomplete application does not 
contain all possible permutations across the input space. Consequently, the 
amount of knowledge that a neural network needs to learn becomes smaller 
and thus easier to obtain. Some problems will naturally be incomplete while 
others might be complete problems that can be reduced to an incomplete 
problem. 

A neural network system can be designed for generalization, the ability 
of the system to correctly or acceptably handle inputs that it has not seen 
previously. In an adaptive system, new input combinations may be safely 
incorporated into the network's knowledge provided that issues concerned 
with stability and convergence have been addressed in the design of the 
learning algorithm. For fixed applications, selection of appropriate training 
data and training procedures may be sufficient to ensure the network can 
properly, or at least adequately, handle unseen inputs. In both situations, 
classes of input combinations can be ignored given that the network is 
capable of generalization. The intention is that when novel input 
combinations do appear, the network is able to maintain correct operation. 

Generalization may employ two different metaphors: one based on 
similarity, the other on critical values. The most intuitive forms of 
generalization follow from the incompleteness of applications. Input 
permutations can be deemed similar from different perspectives, such as 
hamming distance or Euclidean distance. Some neural network architectures 
rely upon this similarity to achieve generalization [Hinton 1984]. Hamming, 
or similarity, based generalization schemes set the output of a novel instance 
according to how closely it matches a stored prototype or stable state in a 
system. This type of generalization is employed in such approaches as 
Hop field networks [Hopfield 1982], Boltzmann machines [Hinton 1984], 
competitive learning [Rumelhart 1986], and case-based reasoning 
[Hammond 1989]. 

Another way to reduce an input space to an incomplete application comes 
from observations of the behaviors of biological nervous systems. These 
systems often discriminate between large amounts of inputs by giving higher 
priority to particular nervous system inputs such as pain or discomfort. A 
complete system becomes an incomplete system by extracting critical 
variables from across the entire input space and ignoring the other 
combinations as don't care states. Approaches that seek to discover general 
critical features that can direct generalization of novel inputs include back-
propagation [Rummelhart 1986], ID3 [Quinlan 1986], and the A"* algorithms 
[Michalski 1983]. 
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2.1.8 Considerations of Adaptive vs. Fixed Applications 

Classification of a problem as fixed does not necessarily indicate the 
usage of a neural network system is improper. Consider the IPCS Gen 1 
system (see Foreword for fiill description) that made use of a fixed network, 
the pre-trained neural network (PTNN) system. The FINN was chosen 
because the underlying mathematical function describing the relationship of 
stability and control derivatives with specific aircraft sensor data was not 
well known before hand. Yet, for a healthy aircraft under nominal 
conditions, this equation does not change. The network was trained on real 
aircraft data so that it could be used to learn the relationships, and then it was 
fixed and not allowed to adapt during operation. The network was a suitable 
solution for this fixed application. 

Adaptive applications fit perfectly with the neural network solution. One 
of the main reasons is because artificial neural networks themselves are 
based upon biological neural networks that are designed for dynamic 
environments. If a project chooses to use a neural network within an 
adaptive application, a project may need no further explanation beyond 
describing the properties of the system that make it adaptive. 

2.2 Artificial Neural Netw^orks vs. Other Computational 
Models 

Another way to assess the appropriateness of a neural network solution is 
to compare the neural network against other computing approaches, some of 
which may be more suitable solutions for the problem at hand. This section 
briefly compares the various intelligent system computational models from a 
variety of perspectives via a series of comparison tables. 

2.2.1 Comparison of Computing Approaches 

In Table 4-1 [Anderson 1992] a high-level comparison of the neural 
network computational model is presented along with other prevalent 
computational models. 

Some of the characteristics in the table, such as parallel vs. sequential, 
were discussed in Secfion 2.1.2, others require some explanation. The 
reasoning model characteristic identifies a key difference between the 
traditional approach and the neural network approach. Traditional software 
is designed in a logical, step-by-step iterative refinement manner. While the 
neural network software itself exists within logical programming, its 
operation and adaptation place it within the realm of statistical probability 
where it reasons in a Gestalt fashion, operating upon geometrical 
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similarities. While this statistical nature makes this approach useful for 
many applications, it also is one of the major reasons why few of those 
applications are safety- and mission-critical systems. 

Table 4-1. Comparison of Computing Approaches [Anderson 1992] 
Characteristics Traditional Computing Artificial Neural Networks 
Processing Style Sequential Parallel 
Reasoning Model Logically Gestalt 
Functions via Rules Images 

Concepts Pictures 
Calculations Controls 

Learning Method by rules (didactically) by example (socratically) 
Applications Accounting sensor processing 

word processing speech recognition 
math inventory pattern recognition 
digital communications text recognition 

A consideration that a V&V practitioner may have is how a particular 
problem benefits from having a neural network solution as opposed to the 
standard form of software, and if this advantage outweighs the problems of 
applying the traditional approach. Traditional software is applied 
everywhere a problem can be broken down into a series of directions. 
Neural network software has only permeated the software market in areas 
that are too difficult to solve with logical approaches. 

The V&V practitioner should be aware that scientific techniques are 
being developed which can transform fixed neural networks into logical 
programming. Much of this discussion lies within the Chapter 8 dealing 
with formal methods. Transformation of the network into logical 
programming could facilitate application of traditional V&V activities. It 
could also lend support for a project that wishes to make use of neural 
networks over a traditional system, but has too many constraints to allow the 
soft computing approach. 

2.2.2 Comparison of Intelligent System Approaches 

Table 4-2 presents a comparison of Fuzzy Systems (FS), Neural 
Networks (NN), Genetic Algorithms (GA), Conventional Control Theory, 
and Symbolic AI [Hines 2004]. The various characteristics are rated using 
the fuzzy terms: good (G), slightly good (SG), slightly bad (SB) and bad (B). 

Table 4-2 indicates that neural networks appear to be excellent 
candidates for non-linear problems, especially for those domains that have 
some need for fault-tolerance, real-time operation, and internal knowledge 
representation. In terms of fault-tolerance, neural networks can be tolerant 
to transient bad data, adapt to accommodate true system change, and based 
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upon the complexity of the architecture, usually have redundancy for 
internal knowledge because of the weights and internal connections. 

Table 4-2. Comparison of Intelligent System Approaches [Hines 2004] 
Intelligent 
Systems 

FS NN GA Control 
Theory 

Symbolic 
AI 

Mathematical 
Model 
Knowledge 
Representation 
Learning Ability 
Expert 
Knowledge 
Non-linearity 
Optimization 
Ability 
Fault-Tolerance 
Uncertainty-
tolerance 
Real-Time 
Operation 

SG 

B 

G 
G 

G 
B 

G 
G 

G 

B 

G 

B 
B 

G 
SG 

G 
G 

SG 

B 

SG 

SB 
B 

G 
G 

G 
G 

SB 

G 

B 

SB 
SB 

B 
SB 

B 
B 

G 

SB 

B 

G 
G 

SB 
B 

B 
B 

B 

Since this document deals mainly with neural networks, in-depth 
discussions of the different forms of intelligent systems are not presented. 
There may even be debate regarding the ratings within Table 4-2. Still, the 
practitioner can use this table to begin the evaluation of whether the neural 
network approach would be more suitable than another soft computing 
solution. As a minimum, the practitioner may ask a project to discuss the 
alternatives and then explain why neural networks are chosen. 

2.2.3 Comparisons of Expert Systems and Neural Networks 

In Table 4-3 [Anderson 1992] a comparison that is specific to neural 
networks and expert systems is presented. Expert systems are another 
widely employed computational model for the development of intelligent 
systems. 

The V&V practitioner should be aware that an adapting neural network 
might drift into a less than optimum state of operation. Such drifting may be 
in small incremental steps that are not readily detectible. Furthermore, 
neural networks may adapt into knowledge that upon careful examination 
may be considered incorrect or erroneous. On the other hand, expert 
systems are considered static, so insertion of new data is done with trusted 
knowledge, or knowledge that is considered correct for usage. 
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Table 4-3. Comparisons of Expert Systems and Neural Networks [Anderson 1992] 
Characteristics Von Neumann Architecture 

(Expert Systems) 
Artificial Neural Networks 

Processors 

Processing Approach 

Connections 

Self Learning 

Fault Tolerance 

Neurobiology in Design 
Programming 

Ability to Be Fast 

VLSI (traditional processors) 

Separate; 
Processes problem rule one 
at a one time; 
sequential 
Externally programmable 

Only algorithmic parameters 
modified 
None without special 
processors 

None 
Rule based approach; 
complicated 

Requires big processors 

Artificial Neural Networks; 
variety of technologies; 
hardware development is on 
going 
Separate: 
Multiple, simultaneously 

Dynamically self-
programming 
Continuously adaptable 

Significant in the very nature 
of the interconnected 
neurons 
Moderate 
Self-programming; but 
network must be set up 
properly 
Requires multiple custom-
built chips 

Anderson's table is not complete and some of the entries may require 
system-specific consideration. Anderson states that for artificial neural 
networks to be fast, they require multiple custom-built chips. While neural 
network-specific hardware does exist and can provide immense speed 
increases, the definition of fast may be better left to the discretion of the 
system designers. In the cases of some currently developed systems,ya^^ has 
been achievable using current ruggedized* processors without specialization 
and together with existing ruggedized operating systems like VxWorks. Just 
as neural networks can operate fast without the necessity of custom-built 
processors, so too can expert systems. However, the table stands as a good 
beginning point for consideration. If the system undergoing evaluation has 
any of the above characteristics as requirements (i.e., fault tolerance), the 
table might aid the practitioner in evaluating the choice of using a neural 
network. 

^ Hardware hardened for safety- and mission-critical use against electromagnetic 
interference, extreme temperatures, vibrations, etc. and is usually one generation behind 
the current state of the art. 
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1.1 A Artificial Neural Network Requirements vs. Other 
Computational Models 

While the identification of a complete set of neural network requirements 
within this chapter is not possible, the V&V practitioner should be aware of 
the special requirements that neural networks have that may not exist for the 
other computational solutions. Each special requirement is an area where 
the V&V practitioner can perform some level of evaluation on the project to 
ensure that it has adequately addressed these needs. 

• Availability of adequate sizes of training and testing data. All neural 
network development requires some amount of data to determine what 
the network architecture will be, to infuse the network with knowledge, 
to evaluate the network during training, etc. This data has to be relevant 
to the problem at hand. For example, F-18 flight data is probably not 
going to be very useful for an autonomous vehicle launched into orbit. 

• An understanding of the problem to guide neural network architecture 
selection. A sufficient understanding of the problem to be addressed by 
the neural network must be clearly exhibited within the project 
documentation. As later sections of this chapter will reveal, lack of an 
understanding of the problem domain will leave an almost unlimited set 
of choices for the neural network architecture type. 

• An understanding by the neural network developers of training 
techniques and network parameter selection. Lack of this understanding 
can lead to long development times or project delays, improper network 
configurations, failure to find adequate solutions, etc. 

• A mathematical neural network development environment. The 
environment should be capable of allowing neural network simulation, 
application of the learning algorithms, evaluation of the neural network 
performance, the ability to save, load, and modify neural network data 
files, etc. 

• Careful considerations of required computing resources for the target 
platform. These considerations include processor speed, memory 
utilization, data storage, and real-time considerations such as threaded 
processes, process communication, and the possible risks and hazard a 
real-time adaptive neural network can face. 

The V&V practitioner may expand or modify the above list, but once a 
project has addressed these concerns, the selection of a neural network 
solution can be judged satisfactory. 
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3. NETWORK SELECTION 

Neural networks originally were designed to emulate the biological 
neural network. They all contain a connection of neurons and use some kind 
of mathematical function to adapt and to perform a recall or output when 
given an input stimulus. Since the first introduction, several hundred 
different neural network designs have been explored. Each one exhibits 
particular advantages given certain circumstances. 

The responsibility of the neural network developer includes the selection 
of appropriate network architecture. The responsibility of the V&V 
practitioner is to ensure that selection is based upon sound mathematical 
principles, acceptable given the problem domain, and able to ensure correct 
operation for a given architecture. 

New neural network architectures are continually being introduced into 
the research literature, and existing architectures are being employed in 
novel ways. Consequently, any guidance quickly can become outdated and 
incorrect. Generally, the suitability of a particular neural network 
architecture for a given application depends upon several factors, including: 
the number of neurons, the connection matrix between the neurons, the 
algorithm used for learning, and the internal transfer functions of the 
network. 

The following sections outline some of the most common artificial neural 
networks. They are organized into general categories of application. These 
categories are not meant to be comprehensive, but to suggest which neural 
network architectures would be more appropriate matches to specific 
application domains. 

Anderson [1992] offers an excellent framework for discussion of neural 
network architecture selection. That framework provides the basis for this 
section's discussion. Anderson classifies the major applications of neural 
networks into the five general categories: 

1. Prediction, 
2. Classification, 
3. Data association, 
4. Data conceptualization and 
5. Data filtering. 

Table 4-4 presents a summary of how the more common network 
topologies fit within the five general categories. The table is far from 
complete as there are too many architectures to consider, but it will 
hopefully serve as a basic guide to improve evaluation by the V&V 
practitioner. 
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Table 4-4. Neural Network Selection 
Neural Network 
Type 
Prediction 

Classification 

Specific Examples 

Back-propagation 
Delta Bar Delta 
Extended Delta Bar Delta 
Directed Random Search 
Higher Order Neural Networks 
Self-Organizing Map into Back-
propagation 
Learning Vector Quantization 
Counter-propagation 
Probabilistic Neural Networks 

Use for Neural Network 
Type 
Use input values to predict 
some output (e.g. pick the 
best stocks in the market, 
predict weather, identify 
people with cancer risks. 
etc.) 

Use input values to 
determine the classification 
(e.g. is the input the letter A, 

Data Association 

Data 
Conceptualization 

Data Filtering 

Hopfield 
Boltzmann Machine 
Hamming Network 
Bidirectional Associative Memory 
Spatio-temporal Pattern Recognition 

Adaptive Resonance Network 
Self-Organizing Map 

Recirculation 

is the blob of video data a 
plane and what kind of plane 
is it) 
Like Classification but it also 
recognizes data that contains 
errors (e.g. not only identify 
the characters that were 
scanned but identify when 
the scanner isn't working 
properly) 
Analyze the inputs so that 
grouping relationships can 
be inferred (e.g. extract from 
a database the names of 
those most likely to buy a 
particular product) 
Smooth an input signal (e.g. 
take the noise out of a 
telephone signal) 

Note that some neural network architectures can be employed across 
multiple domain classifications. For example the self-organizing map is 
employed both as a predictor and for data conceptualization. Omission of a 
particular neural network architecture from a classification is not meant to 
imply that architecture is unsuitable. 

The dimension of the neural network selection process is further 
complicated by the fact that an application domain may depend upon 
functionality from several of the above categories. For example, a flight 
controller may perform data filtering and classification. How such complex 
systems are decomposed can greatly impact the choice of appropriate neural 
network architectures. Furthermore, how they interact, e.g., the output of a 
data filter may feed a classifier, that in turn feeds a predictor, the output of 
which ultimately may be fed back as part of a training update to the data 
filter. 
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A comprehensive theoretical discussion (beyond the scope of this 
chapter) of the various neural network computational models is found in 
General purpose computation with neural networks: a survey of complexity 
theoretic results by Sima and Pekka [2003]. This document, which has been 
updated several times since its first publishing in 1994, provides an 
exhaustive annotated bibliography of the major theoretical results that have 
been obtained in the general field of neural networks, and identifies 
outstanding problems and open questions that currently remain. 

The following subsections describe these five general categories of 
application for neural networks outlined in Table 4-4. 

3.1 Networks for Prediction 

Prediction is a common reason for use of neural network technology. 
Prediction occurs because the network learns to approximate a function 
describing a set of data, and then given a stimulus or input, can compute 
values anywhere along this function. Areas where one might find predictive 
neural networks are in error minimization, vehicle health monitoring, and 
optimum decision-making. Prediction success depends on several variables, 
including the quality of the training data and the architecture of the neural 
network. 

3.1.1 Feed-forward, Back-propagation 

ThQ feed forward architecture [Parker 1987, Rumelhart 1986] is one of 
the more commonly used structures within neural network development. 
Applications using feed-forward architectures include image processing, 
prediction, signal processing, and robotics. The feed-forward architecture 
has been proven quite capable of approximating non-linear functions. 

Fig. 4-2 shows an example diagram of the feed-forward architecture. 
Most of these networks contain multiple layers and are often known by 
another name, the multi-layer perceptron. These layers include an input 
layer, an output layer, and internal layers called hidden layers. While the 
network can contain unlimited hidden layers, research by Sima [2003] 
explains that no more than four layers are needed to solve complex 
problems. The feed-forward is named because inputs propagate from input 
layer to hidden layer to output layer in a forward progression. During 
training, back-propagation can be used to carry errors backwards through the 
network layers to allow for weight adjustment. 
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V&V Considerations 
While the feed-forward architecture is widely used, there areas of 

concern on which a V&V practitioner should focus. First, the selection of 
the number of hidden layers and the number or neurons within each layer is 
more of an art than a science. Similarly, the V&V analysis of these choices 
is likewise an art form. 

One approach which designers may be inclined to use is manual 
iterations of design choices with each next choice an attempt to improve 
over the previous choice. Anderson [1992] identifies three rules that can be 
used to guide this development. 

1. The number of neurons in a hidden layer should be congruent to the 
complexity of the relationship between the input data and the output data. 
As this relationship becomes more complex, more neurons should be 
added. 

2. Generalization of the feed-forward neural network can be achieved by 
adding in more hidden layers, provided that the function being learned 
can be separated into multiple stages. This means that if the function can 
be considered a combination of functions itself, then each function 
should have a hidden layer devoted to approximating it. 

3. The number of neurons in each hidden layer is related to the amount of 
available training data. Eq. (4.1) is a good rule-of-thumb: 

i^,_ Number of Training Data Pairs (A\\ 
^ (Number of Input Neurons + Number of Output Neurons) • a 

Where Nt is the number of neurons in layer / and a is a factor from one to 
fifty, selected based upon the noisiness of the data. Nearly noiseless data 
would use values between one and five, typically noisy data would use a 
value often, and data with more significant noise would use values of 25 
or 50. Note that too many neurons within a hidden layer will simply 
cause the training set to be memorized (with worst cases being one 
neuron for each input-output training pair). 
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Connections 

.--J Hidden Hidden 
nput V ^ Layer 1 Layer 2 
Layer 

Figure 4-2. An Example Feed-forward Back-propagation Network 

The above rules are not only appropriate for the use of the neural network 
designer, but also for the V&V practitioner. Hopefully, the neural network 
designer has documented these heuristics for the V&V practitioner to 
review. 

Other problems with this architecture is the number of back-propagation 
training iterations that may be required due to the network attempting to 
generalize from too many input-output training data pairs. As characteristic 
of non-linear systems, network learning may converge to a local minimum, 
which may or may not be sufficiently near the best or acceptable solution. 

3.1.2 Higher-order Neural Networks 

Feed-forward neural networks are capable of handling linear separations 
within the input space, but are unable to generate decision regions which are 
concave or which are multiply connected. A neural network architecture 
capable of approximating higher-order functions such as polynomial 
equations was first proposed by Ivakhnenko [1971] which led to networks 
containing high-order processing units [Giles and Maxwell 1987] or higher-
order neural networks (HONN). 

A simple HONN could be thought of as describing an elliptical curve 
region. The HONN function that it learns can include square terms, cubic 
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terms, and higher orders. These terms are comprised of mathematical 
combinations of the inputs into the network as shown in Fig. 4-3. 

Sigma Layer 
(Summation) 

Pi Layer 
(Product) 

Input 
Layer 

Figure 4-3. An Example Higher-Order Neural Network 

The combinations of inputs can occur in any fashion, given that the 
inputs are only multiplied against one another. For example, with Fig. 4-3, 
if the three inputs are labeled A, B, and C, then possible input patterns could 
be: A, B, C, AB, AC, BC, AA, BB, CC, AAB, AAC, etc. The squared and 
cubic terms are then simply an input multiplied against itself. The 
polynomial equation then becomes a weighted summation of these 
individual input patterns. The weights are what the neural network adapts 
until an appropriate function for the problem is found. An example equation 
(4.2) is given by: 

Output = w^A + wjB -\- W'^C + w^AA + wq^AB + • • • + 'N A^B^C^{42) 

Even more exotic components to the polynomial function can be 
obtained by first applying another mathematical function to the inputs. 
These could include functions like SIN, COS, TAN, or even LOG. An 
example Eq. (4.3) could then be: 

Output =w^A+W2 sin(A) + w^B + w^ \og(B)-\- w^Asin(B)-^ ••• (4.3) 
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V&V Considerations 
Higher-order neural networks can consume large amounts of computer 

resources if they are designed to be overly inclusive of all the possible 
permutations of the input space. Each neuron in the input layer can be 
comprised of many multiplication and division operations which when 
accumulated can begin to consume valuable processing time. 

Additionally, HONNs of second-order or higher will contain many more 
weight parameters than first-order neural networks. As higher-orders are 
used, the explosion in the weight space creates a computational increase and 
this becomes another difficulty in using the HONN. 

There will always be a balance between the complexity of the basis 
functions formed by the input layer and real-time limitations. The 
compensating benefit is that it is possible to arrange for the response of the 
neurons to be invariant to various transformations of the input, such as 
translations, rotations, and scalings [Bishop 1995]. 

3,2 Networks for Classification 

Classification problems involve identification and assessment of a 
situation given an observation of data. Different classification problems 
include biometric identification, sorting out hostile targets from benign 
targets, and quality control. 

3.2.1 Learning Vector Quantization 

The Learning Vector Quantization (LVQ) neural network architecture 
was created by Kohonen [1988]. Kohonen is also the creator the Self-
Organizing Map found in Section 3.4.2. The LVQ algorithm is meant for a 
statistical classification or recognition method by clustering the input data 
space into class regions. 

A diagram of the LVQ network is shown in Fig. 4-4. Like most of the 
neural network architectures, the LVQ network contains an input layer and 
an output layer. Each neuron in the output layer represents an individual 
classification or decision. The middle layer, called a Kohonen layer, 
contains a number of neurons, the actual number being related to the 
complexity of the problem space. 
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Output 
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Kohonen 
Layer 

Input 
Layer 

Figure 4-4. An Example Learning Vector Quantization Network 

The LVQ network is designed for supervised training where the network 
is presented with a learning sample containing an input stimulus and a 
classification. Based upon the input stimulus, a neuron within the Kohonen 
layer is selected as the best matching unit, the closest neuron to the stimulus. 
A second best matching unit is also selected. A learning algorithm is then 
applied to the weights of the neurons to move one closer towards the training 
classification, and the other one away from the training classification. There 
are several different types of LVQ algorithms such as LVQl, LVQ2 and 
LVQ3, and they each differ in how the weights are updated. 

V&V Considerations 
The V&V practitioner should identify if the project choosing to use an 

LVQ network has considered the effect of the complexity of the problem. 
More complex solutions will require more neurons within the Kohonen 
layer. Too complex of a problem could need a burdensome computational 
requirement. A reduction in the input space parameters through principle 
component analysis might solve this problem. 

The project should have also considered proper selection of the particular 
LVQ algorithm. LVQ2 was designed for optimized classification separation 
but should only be used with a small value for the learning rate and a 
restricted number of training steps [Kohonen 1988]. LVQl and LVQ3 are 
more robust processes and can accept larger number of training steps. 
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3.2.2 Counter-propagation Network 

The counter-propagation network, developed by Hecht-Nielson [1988], 
may be viewed as a competitive neural network that combines the 
functionality of a self-programming lookup table with the additional ability 
to interpolate between entries. The counter-propagation network tries to 
perform complex pattern classification but with a reduced network structure 
and processing time [Anderson 1992]. 

During the unsupervised competitive learning, the winning neurons are 
chosen by the Kohonen layer, which functions like a Kohonen neural 
network. However, not only the weights of the Kohonen layer but also the 
weights of the output layer are adapted in order to become closer to the 
output value of the presented object. 

The first counter-propagation network consisted of a bi-directional 
mapping between the input and output layers [Chen 2001]. In essence, while 
data is presented to the input layer to generate a classification pattern on the 
output layer, the output layer in turn would accept an additional input vector 
and generate an output classification on the network's input layer. The 
counter-propagation network derives its name from this counter-posing flow 
of information through its structure. 

An example network is shown on the next page in Fig. 4-5. The 
unidirectional counter-propagation network generally is implemented with 
three layers. The inputs must undergo a normalization to ensure the 
Kohonen layer can learn the correct class [Anderson 1992]. In some 
implementations, where the inputs have not been normalized before they 
enter the network, a fourth layer sometimes is incorporated. The main layers 
include an input buffer layer, a self-organizing Kohonen layer, and an output 
layer that uses the Delta Rule to modify its incoming connection weights. 
Sometimes this layer is called a Grossberg Outstar layer. 

Hech-Neilsen's [1988] goal was to address weaknesses of the back-
propagation network after which counter-propagation neural network is 
modeled. The back-propagation neural network is susceptible to over-fitting 
and the need for significant training epochs in some applications. This is 
particularly characteristic of situations where the relationships between 
inputs and outputs are subtle, and yet predictions must be accurate. Counter-
propagation is an alternative technique for pattern recognition. 

This approach leverages advantages of both the Kohonen unsupervised 
competitive learning technique, which is good in feature mapping, and the 
delta rule or Widrow-Hoff rule for supervised learning. The counter-
propagation neural network has been demonstrated to perform better than 
back-propagation in some applications because of its unsupervised learning 
capability. The operation for the counter-propagation network is similar to 
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that of the Learning Vector Quantization network in that the middle 
Kohonen layer acts as an adaptive look-up table, finding the closest fit to an 
input stimulus and outputting its equivalent mapping [Ellingsen 1994]. 

Output 
Layer 

(only 1 neuron 
generates an output) 

Kohonen 
Layer 

(only 1 winner is activated) 

Figure 4-5. An Example Counter-propagation Network 

V&V Considerations 
The V&V practitioner should ensure that proper analysis has been done 

regarding the input layer of a counter-propagation network. The number of 
neurons in this layer is related to the number of independent variables that 
describe the input space. Presumably, the number of parameters is selected 
based upon some variable analysis technique such as principle component 
analysis. If there are too many parameters used to train the network, the 
network may be unable to reach an adequate generalized solution within 
computational time limits. If there are too few parameters then a generalized 
solution may not be reachable at all. 

Proper scaling should be applied to the inputs to alleviate any problems 
from the Kohonen layer. Since this layer will likely identify winning 
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neurons based upon a distance metric, unsealed input parameters with larger 
values could skew the neuron selection and decrease success. 

Another consideration for the practitioner is the potential for neurons 
within the Kohonen layer to become over-extended and represent improper 
clustering on the inputs. If the learning algorithm is not set up properly, then 
neurons within the Kohonen layer could begin to represent several classes 
instead of one neuron per class. If this happens, the output from the neural 
network might be an erroneous mixture of multiple classes. 

3,3 Networks for Data Association 

Data association builds upon data classification by including one 
additional step. In some situations the data that comes into the system may 
contain errors that are more than simply noisy content. For example, the 
errors may be due to omissions, incorrect values, or some other defect with 
the data source. Data association is intended to overcome such difficulties. 
The strategy is for the neural network to learn a set of expected values that 
then constrain it to generate an acceptable (i.e., corrected) output within this 
questionable set. The goal is that data with imperfections can be corrected 
back to one of the expected outputs. 

3.3.1 Hopfield Network 

The Hopfield Network, developed by Hopfield [1982], was designed for 
pattern completion, auto-association, and the solving of optimization 
problems, such as determining the shortest path with the famous traveling 
salesman problem. The network is based upon energy concepts and parallels 
drawn from dynamical physical systems. A neuron in the Hopfield neural 
network changes state only if the overall energy, or internal weight change, 
of the state space is decreasing. Element state changes thus are designed to 
diminish the total energy level of the neural network. 

Fig. 4-6 shows a basic Hopfield network where each neuron is connected 
to all other neurons. Originally, each processing element produced output in 
a binary (zero-one) format. Binary output restrictions can be relaxed with 
the use of a sigmoid-based transfer function. 
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Figure 4-6. An Example Hopfield Network 

V&V Considerations 
The V&V practitioner should be cognizant of a few potential problems 

with the Hopfield neural network architecture: 

1. The number of patterns that can be stored and accurately recalled is 
severely limited to approximately fifteen percent of the number of 
processing elements in the Hopfield layer [Anderson 1992]. 

2. The Hopfield network is capable of oscillations if the weights are not 
selected properly. 

3. Stable equilibrium states can be influenced by selection of bounded 
activation functions and constraint conditions on the interconnection 
matrix. 

4. The Hopfield network stability is also related to the similarity of the 
training patterns. 

Maintaining a fifteen percent upper bound on the number of neurons and 
selecting highly orthogonal pattern sets can mitigate these limitations. 
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3.3.2 Boltzmann Machine 

The Boltzmann machine is similar to the Hopfield network with the 
addition of a simulated annealing technique that searches the pattern layer's 
state space for a global minimum. Annealing is a concept borrowed from 
materials science. Under annealing, a material is heated to a very high 
temperature where atoms form and break bonds due to the higher energy 
levels. The material is then slowly cooled, coercing the atoms to form stable 
configurations. Similarly, the Boltzmann machine uses a simulated 
annealing and tends to gravitate to an improved set of values with successive 
data iterations through the system. 

When the trained Hopfield network is presented with a partial pattern, the 
network will complete the missing information. 

V&V Considerations 
The previously discussed problems and limitations of the Hopfield 

network also apply to the Boltzmann machine. The Boltzmann machine 
makes uses of a temperature variable that is very akin to a learning rate. 
This variable controls the energy, or amount of internal weight change, 
within the network. This variable is set high initially and decreases over 
time. Proper selection of this variable may be an area for evaluation. 

3.3.3 Hamming Network 

The Hamming Network developed by Lippman [1987] in the mid 1980's 
is another version of the Hopfield neural network architecture. The 
difference is that a maximum likelihood classifier is added to the input layers 
of the network. 

The Hamming distance metric, which is often used in signal processing, 
is the bit-by-bit distance between two binary vectors. When applied to a 
neural network, one binary vector is a target pattern and the second vector is 
a measured pattern. This measured pattern is classified to a category based 
upon its closeness with the learned training patterns. 

A typical hamming network is shown in Fig. 4-7 on the next page. The 
number of network input layer nodes equals the number of separable binary 
features on which classification is to be based. The internal category layer is 
fully connected with the input layer and fully connected within that layer (all 
category neurons connect to one another). Each neuron within the category 
layer connects to only one output neuron. 

The number of classifications the network is to learn also dictates the 
number of neurons within the category layer. This constitutes a significant 
specialization of the Hopfield architecture where the number of neurons in 
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the middle layer is equal to the number of neurons in the input layer. The 
number of neurons in the output layer is equal to the number of neurons in 
the category layer. 
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Figure 4-7. An Example Hamming Network 

The neurons in the output layer compete with one another to determine 
which neuron activates, and thus performs the classification. 

V&V Considerations 
The Hamming network has some improvements over the Hopfield neural 

network: 

1. The Hamming network makes use of fewer category layer neurons 
because of its specialization, 

2. The Hamming network is a little more insensitive to randomness, and 
3. The Hamming network is both faster and more accurate than the 

Hopfield network [Anderson 1992]. 

However, the Hamming network, like the Boltzmann machine still shares 
the same disadvantages as those identified with the Hopfield neural network. 
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3.3.4 Bi-directional Associative Memory 

77 

The bi-directional associative memory (BAM) model developed by 
Kosko [1987] is another generalization of the Hopfield model. An example 
of a BAM neural network is diagrammed in Fig. 4-8. 

Output 
Layer 

Hidden 
Layer 2 

Hidden 
Layer 1 

Input 
Layer 

Figure 4-8. An Example Bi-directional Associative Memory 

The BAM is capable of recalling one piece of information when given 
another piece. For example, the network might recall a person's face when 
given their voice signature. The advantage to using a BAM neural network 
is that if the input information is noisy or otherwise partially 
missing/corrupted, the BAM might be able to correct the input information 
and retrieve the associated information. 

The name bi-directional comes from the manner in which information is 
recalled from the network. Information passes into the BAM through the 
input layer, is processed in a hidden layer, these inputs can be passed into a 
second layer, and then back again from the second layer into the first. This 
continues until there are no further changes in the weights of the units within 
the two layers. 
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V&V Considerations 
As with the Hopfield network, the BAM network can incorrectly 

determine a pattern when input information which complements the specific 
pattern is given to the network. The BAM network can also suffer from 
crosstalk when patterns that are close to each other are applied to the 
network. In this case, the similar patterns can create an erroneous stable 
state within the network stabilizing on meaningless vectors [Freeman 1991]. 

3.3.5 Spatio-temporal Pattern Recognition (Avalanche) 

The Avalanche network depicted in Fig. 4-9 on the next page is a result 
of Grossberg [1970]. The purpose for development was driven by efforts to 
account for the temporal processing of information capable by the biological 
brain. Hecht-Nielsen later applied this network to time-varying signals such 
as radar applications, resulting in the spatio-temporal pattern recognition 
network [Hecht-Nielsen 1986]. 

Spatio-temporal patterns are patterns that are changing across space and 
time. An example would be human speech where the voice of the human 
speaker changes based upon what they are saying and how they are saying it. 
Other signals can change across time including sonar patterns and video 
imagery. 

The spatio-temporal pattern network is comprised of a Kohonen layer 
that can extract spatially and temporally correlated features. Subsequent 
layers of the network then learn to categorize these features making it 
possible to recognize and classify similar patterns. 

V&V Considerations 
Guidance for this network is limited, but several factors will need to be 

addressed by a project wishing to use a spatio-temporal approach: 

1. The number of patterns that must be learned and how this affects the 
number of neurons within the network's Kohonen layer 

2. Application of different forms of training (learning single temporal 
sequences vs. learning multiple temporal sequences 

3. Specific approaches to the design of a spatio-temporal structure as there 
are many different variants 

4. Computational resource requirements. 
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Figure 4-9. An Example Spatio-temporal Pattern Network 

3.4 Networks for Data Conceptualization 

Data conceptualization is a data mining technique. It doesn't have any 
strong definitions of data description, or how the data is related to one 
another. Instead the neural network develops a functional understanding of 
how pieces of data are related. Clustering similar data into meaningful 
groups that are connected via some previously undefined characteristic 
would be one form of data conceptualization. 

3.4.1 Adaptive Resonance Theory Network 

A problem with the back-propagation approach to neural network 
learning is that when the environment of the network changes, to 
accommodate this change the neural network must undergo retraining. To 
learn new patterns, the network might just be trained on the most recent 
patterns in its environment. This would result in the newest patterns being 
best remembered and the older patterns slowly being forgotten. Another 
approach might be to retrain the network upon all the patterns at once, but 
this is computational expensive and not practical for most situations. 

The Adaptive Resonance Theory (ART) network, developed by Grossberg 
[1976] is an attempt to solve this issue. The basic premise with the ART 
approach is that learning can be incremental with new learning adding to 
existing learning rather than overwriting it. Two ART neural network 
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architectures have been developed: ART-1 and ART-2. ART-1 works with 
binary patterns while ART-2 is for continuous patterns. There are also many 
other variants of the neural network including inclusion of fuzzy logic in the 
Fuzzy ART and Fuzzy ARTMAP. 

The ART network is a recurrent network where inputs are passed from 
the first layer of the network, the feature representation field, to the second 
layer of the network, the category representation field, and then back to the 
feature representation field as shown in Fig. 4-10. ART networks make use 
of unsupervised learning. The term adaptive resonance is used to describe 
when the category layer and feature layer are mutually reinforcing each 
other and have reached a stable state. 

Category Representation 
Layer 

Feature Representation 
Layer 

Figure 4-10. An Example ART Neural Network 

V&V Considerations 
The V&V practitioner must consider the effects of noisy data on the ART 

network as noise can cause the network to become confused when trying to 
match a pattern it has already learned. A vigilance parameter is used to 
control how the network reacts to difference within the pattern classes. High 
vigilance causes the network to be aware of small differences while low 
vigilance causes the network to only be aware of large differences. If the 
vigilance parameter is not set optimally, then the network may be overcome 
by noise or it could misidentify patterns. 

The ART-1 has a limitadon in its ability to be robust [Paul 2003]. Within 
ART-1 a single neuron within the category representation layer handles a 
complete pattern classification. This can be considered a limit on the 
network's fault tolerance, as there is no secondary storage in neighboring 
neurons. 
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3.4.2 Self-organizing Map 

Neural networks known as self-organized feature maps or self-organizing 
maps (SOMs) are designed as topology representing networks whose roles 
are to learn the topology of an input space with perfect preservation. In this 
sense, they learn the function that describes a map of the input space. 

Developed by Kohonen [1988] the SOM belongs to a class of networks 
known as competitive neural networks. Unlike the feed-forward neural 
networks, competitive neural networks operate under a winner-take-all 
learning algorithm. When the network receives an input stimulus, it 
searches throughout the network structure looking for a neuron that is closest 
to this input. This neuron is known as the best matching unit (BMU) and the 
network will adjust this unit, and its neighborhood comprised of neurons 
connected to the BMU. In this way, the input space becomes compressed by 
being represented by neurons spatially. 

An example of an SOM is seen in Fig. 4-11. SOMs make use of 
unsupervised learning because they do not require a specific output during 
adaptation. Because of this, SOMs are very good at data compression and 
identifying underlying clusters of data in an input space. 

Figure 4-11. An Example SOM Network 

V&V Considerations 
There are different forms of the SOM architecture, but they all share 

some common considerations that the V&V practitioner may want to be 
aware of. First, these networks are usually designed to grow by adding new 
neurons into the network over time. This can lead to a network expand in 
size beyond its computational capabilities, both in regards to memory 
utilization and processor time requirements. 
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There are usually several variables which control the learning and 
growing of the SOM. Determination of an optimum set of controlling 
parameters can take a significant amount of study. A project may want to 
perform experiments to guide selection of learning rates, forgetting 
constants, and error thresholds. 

3.5 Networks for Data Filtering 

Data filtering problems require that two or more pieces of information be 
separated from a single source. Removal of noise from a transmitted 
message requires filtering. Error in a system could be thought of as noise 
and a neural network solution may try to remove the error by correcting or 
compensating for it from another piece of information. 

3.5.1 Recirculation Neural Networks 

Hinton [1988] gives two criticisms against back-propagation neural 
networks: (1) they require the selection of desired outputs for supervised 
training and (2) their very nature of passing back errors along the same 
paths, which propagate forward inputs into the network, make developing 
back-propagation neural networks in hardware difficult. The solution to the 
second problem was the Recirculation neural network, shown in Fig. 4-12. 

Output 
Layer 

Hidden 
Layer 

Visible 
Layer 

Input 
Layer 

Figure 4-12. An Example Recirculation Network 
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The recirculation network contains a visible layer and a hidden layer. 
Hinton [1988] described the process by which additional visible-hidden 
layer combinations can occur where the hidden layer of a lower layer forms 
the visible layer of a higher layer so the neural network can scale. The 
visible and hidden neurons are fully connected. In order to facilitate the 
network's implementation into hardware, the same group of neurons used 
for the visible neurons are used for the output neurons. The weight update 
on the visible neurons is then done in a feed-forward progression based on 
the calculations of the hidden layer. The data from the visible layer is 
recirculated back to the same neurons (now within the output layer) giving 
rise to the name of this network architecture. 

The hidden layer learns to represent the data passed on by the visible 
layer. For applications that want to compress these representations, fewer 
neurons in the hidden layer than in the visible layer can be used [Anderson 
1992]. Because the network can perform compression, the network can^be 
thought of as acting like a low bandpass filter with a transition point given 
by the number of neurons within the hidden layer. 

V&V Considerations 
Limited literature has been found regarding use of the recirculation 

neural network since its inception in 1988, leaving this architecture as young 
and perhaps not well explored. Any project that makes use of this neural 
network type will need to ensure that assumptions taken in [Hinton 1988] are 
reasonable. The main assumption is that the recirculation network can 
perform back-propagation given a linear functional constrain for neurons in 
the visible layer, the weight matrix between the visible and hidden neurons 
is the symmetrical, and the visible neurons have a high regression. Hinton 
[1988] found that the network performs a back-propagation-like learning 
when the visible neurons are non-linear, but this evidence was somewhat 
more difficult to explain. 

3.6 Others 

The five general categories of application are not the only areas where 
neural networks are used. Because neural networks can be trained to 
minimize an error function, they can be used in optimization scenarios where 
the error is simply a cost Sanction that the system developers want to 
improve. Neural networks have also been used in sensor failure detection, 
identification, and accommodation problems to improve the fault-tolerance 
of aircraft. Neural networks can also be combined with genetic algorithms, 
expert systems, and fiizzy logic to create sophisticated complex solutions. It 
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could be argued, however, that the V&V practitioner could decompose any 
neural network solution into one of the five basic classes. 

4. HOW ARTIFICIAL NEURAL NETWORKS ARE 
BEING USED 

Many of the problem domains in which neural networks are being 
employed involve applications where answers are by their nature nebulous— 
or at least, are not 100 percent certain. Neural network solutions are being 
employed because they perform better than alternative computational 
models, rather than because they y'\Q\6. perfect solutions. 

Loan approval is an example where neural networks have been shown to 
produce better results than existing technologies, yet they still are not 100% 
accurate. Banks have long used experts to identify the likelihood of a 
successful loan payback from a borrowing entity. Sometimes this 
knowledge has even been transformed into an expert system, but still lending 
institutions look for an improved accuracy in predicting bad loans. 
Predictions that are 90% accurate would be an improvement over other 
current selection processes. Kemsely [1992] discusses how neural network 
solutions improved bad loan prediction and how neural network 
improvements have led to their adoption by credit card companies as a part 
of an application screening process. 

To provide the V&V practitioner some familiarity with neural network 
uses, four broad application areas are reviewed: 

1. Pattern recognition, which includes vision, speech, character 
recognition, and target discrimination and recognition. 

2. Signal Analysis, which includes language processing, and overlaps 
pattern recognition. 

3. Robotics, which integrates control systems, pattern recognition, and 
signal analysis. 

4. Expert Systems, which includes complex analysis such as medical 
diagnosis or system diagnosis. 

The choice of example applications considered here is intended to 
complement Section 3 that analyzed the major characteristics and potential 
limitations of the prevalent neural network architectures and learning 
methods, and the major characteristics of problem domains to which neural 
network solutions could be deemed appropriate. The above broad areas are 
not disjoint. Each is complex, and necessarily draws upon the other problem 
domains. 
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4.1 Pattern Recognition 

Pattern recognition includes such areas as vision, speech, and character 
recognition, as well as target discrimination and recognition. 

The V&V practitioner may see neural networks being used for pattern 
recognition activities. One example comes from the JFK airport where 
neural networks were used to detect bombs by recognizing a pattern from the 
data generated by gamma ray sensors. In this case the neural network was 
trained to identify small variances that it associated with the presence of a 
bomb. 

A second example is that of a trained back-propagation neural network 
that was used to provide a probability that a patient in a hospital was 
experiencing an actual heart attack. The neural network was trained upon 
data collected from emergency rooms. From this data the network discerns 
patterns to assist doctors in identifying the real attacks from the false alarms. 

4.1.1 Quality Control 

Quality control within manufacturing is concerned with ensuring that the 
product on the assembly line meets a desired specification. This 
specification can be written to describe a product's shape, size, color, 
texture, etc. Neural networks can be trained to recognize good examples and 
through pattern recognition can detect when a product fails to match the 
example. 

Neural network quality control systems never tire and can be easily 
deployed and produce consistent measurements. These systems are 
excellent candidates to replace the human inspector, who can become 
distracted or overwhelmed to perform the same job. 

4.1.2 Character Recognition 

Having computers capable of reading human written language can 
improve the human-computer interface that will lead to more ubiquitous 
computing solutions. One of the ways that can accomplish this is through 
character recognition systems that make use of neural network technology. 

Character recognition can be used as part of a paper document scanning 
technology known as optical character recognition. In this technology, paper 
documents are first scanned, converted into some intermediary computer 
readable form, and then processed by neural networks looking for 
alphabetical patterns to identify what letter or number is represented. These 
systems can be quite complicated given that every human has a 
distinguishing writing style that can vary from very neat to very sloppy. 
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Another area where neural networks can be used within character 
recognition is in direct human-to-computer interfaces such as the notepad or 
palm computing devices that have recently begun being sold. These devices 
translate the written input in real-time with the added advantage of instant 
feedback to allow the user to correct improper conversions. 

Anderson [1992] cites several more examples including a credit card 
reader with a 98-99% accuracy, systems which can read cursive, and neural 
networks that have been developed to interpret Asian language characters. 
These characters can be much more difficult than the roman-based languages 
because they use far more intricate combinations of brush strokes. 

4.1.3 Language Processing 

Like character recognition, language processing also has a generally 
fixed set of patterns that can be interpreted and converted by neural network 
systems. Instead of the patterns being made up of images representing 
characters or words, language is made up of phonetic patterns that comprise 
letters, syllables, and words. 

Language processing has matured to a point where it is somewhat 
common. More recently, neural networks are found in interactive voice 
response systems where many speakers use a reduced subset of language, 
namely, the digits " 1 " through "0," the English alphabet and place names 
(e.g. proper names of states and major cities). Word processing applications 
can perform speech-to-text conversions to provide highly useful digital 
dictation applications. One of the hopes behind development of neural 
networks that are able to translate speech is to bridge the gap between 
humans and computers even more by providing a direct voice-to-command 
interface. With this technology pilots can communicate orders to their 
vehicle or ground control can describe commands to robotic satellites. 

4.2 Signal Processing 

Signal processing is an application area that will be discussed separate 
from pattern recognition, even though the two share computational 
similarities. For this discussion the difference will be based upon the 
transformation of the raw signal data. Signal processing applications do 
something to transform this data and then make a decision, prediction, etc. 
while pattern recognition systems can perform an action on the raw data 
without transformation. 

Signal analysis encompasses applications that can collect and analyze 
sensor data, sometimes for feedback into the system or for decision-making 
purposes. Kemsley [1992] identifies a signal processing application for 
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signal recognition and classification where target recognition occurs through 
interpretation of a reflected signal such as radar. More recently, neural nets 
have used to recognize a person by the gait of their walking. 

A likely area for neural networks with signal processing is in noise 
reduction. An adaptive neural network could learn the underlying behavior 
describing the noise function, and then remove this function from the data 
signal. 

Another application area for neural networks with regards to signal 
processing is that of data compression. Some neural network data 
compression techniques train the network on raw data in an unsupervised 
manner - without guidance, allowing the network to figure out how best to 
perform the compression. Data sets can experience dimension reduction and 
via internal data clustering, groups of similar data can be represented by 
fewer pieces of data. The DCS network within the IPCS system can be 
thought of as performing data compressions as it associates stability and 
control derivatives into clustered regions of the flight envelope. 

Data compression is not without some drawbacks. Reducing a ten-
dimensional data set to seven dimensions can save on data storage, but when 
the data is decompressed to the original higher dimension, some of the 
information is lost. The advantage in using a neural network approach is 
that if the underlying compression mechanism isn't well known, the neural 
network is able to implement an approach through adaptation. 

Gelenbe [2004] discusses the use of neural networks for the 
compression/decompression of image data used within videoconferencing, 
HDTV, and videophones. Gelenbe suggests that the popularity of 
employing neural networks in image compression is primarily due to their 
learning nature. Carrato [1992] provides an example where a feed-forward 
neural network model was able to achieve a 16:1 compression ratio on 
several images. 

The V&V practitioner may see projects that employ neural networks in 
the areas of noise reduction and data compression, especially when 
considering that future space missions will utilize a wide array of 
instrumentation each with increasing precision. NASA may use neural 
networks for noise reduction of telemetry data, satellite data feeds, or 
transmissions that have traveled long distances through deep space. As the 
precision increases and the size of the data collected grows, the neural 
network data compression techniques might offset some of the associated 
problems. 
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4.3 Robotics 

Robotics is another area in which a V&V practitioner likely will see 
extensive use of neural network technology. Robotics integrates several 
complex functions including: control systems, pattern recognition, and signal 
analysis. Robotics also utilizes many different intelligent system 
technologies where specific forms of intelligent software are employed to 
solve very specific problems, yet the component systems are expected to 
work together as a whole. Neural networks often are employed because of 
their capabilities to adapt to new situations, to obtain and maintain 
knowledge, and to generalize beyond their original training. 

Beyond the complex realm of autonomous systems, neural networks are 
being deployed in a wide range of servo-control applications. These range 
from sophisticated aerospace applications such as the IPCS, to various 
mobility support systems such as anti-lock breaking systems in automobiles, 
to thermostats that adapt to environmental conditions. 

Neural networks are not only embedded in many robotics systems in 
manufacturing, they are often involved in other areas of process control, for 
example, shop floor planning [Jain 1998] and diagnosis [Zhang 1995]. 

4.3.1 Autonomous Vehicles 

The name of the research and production field that uses robotic vehicle 
technology is autonomous vehicles. Two areas within autonomous vehicles 
are robotic ground vehicles and unmanned-aerial (and aquatic) vehicles 
(UAV). 

The Defense Advanced Research Projects Agency (DARPA) recently 
sponsored a robotic competition called the Grand Challenge [DARPA 2003] 
to promote the development of autonomous vehicle technologies. Contest 
entrants had to design a vehicle that could traverse a desert route in less than 
ten hours, with no human interface or control, deciding its own navigation, 
and handle varying terrain conditions and obstacles. Thirteen entries were 
allowed to compete in the race, but ultimately none of them managed to 
succeed. Still, the possibilities of employing unmanned robots for combat or 
reconnaissance maintains a worthy goal and DARPA plans to host the 
competition again next year. 

NASA has a particular interest in developing autonomous robotic 
exploration because of the time-delays that can be experienced by ground 
control as they manually direct a rover or satellite to perform complex 
functions. Good example cases where robotic vehicle technology could 
have been employed are the recent NASA Mars rovers. Spirit and 
Opportunity. The planet-to-planet time delay between Earth and Mars is 
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around 12 minutes. The time delay situation is even worse as the mission 
extends to the outer planets. Very likely robotic exploration will be an area 
where the V&V practitioner will see neural networks being employed. 

The development of UAVs will become one of the major areas to employ 
neural network technology. Primarily, this is because the technology has 
matured sufficiently that companies like Boeing now are prepared to include 
neural network technology in their military development. The success of the 
US Air Force unmanned reconnaissance aircraft, the Globalhawk, fiarther 
encourages development in this area. 

4.3.2 Manipulator Trajectory Control 

Kemsely [1992] reports on neural networks being used in the area of 
robotic manipulator trajectory control. The design of a robot's kinematics is 
very difficult and time consuming. If neural networks are used, they may 
save valuable development time and solve the problem on their own because 
of adaptability and generalization. 

Consider a NASA rover with an instrument arm that extends to collect 
data from its environment. As that arm moves, an algorithm controls where 
it can move, how fast it can move, and knows how it can move at the next 
step. If the manipulator should somehow become changed due to collision, 
vibration, internal damage, or even software failure, the algorithm has to be 
changed to accommodate this. Trying to account for all the possibilities of 
failure can very nearly, if not completely, make traditional algorithm 
development impossible. Adaptable intelligent systems could re-learn the 
functionality on their own. 

In addition to failure, another dynamic consideration for manipulator 
control is obstacle avoidance. Instead of the changes in the system due to a 
failure, the system has to be able to change behavior given differing 
environmental conditions or objects. Much like the failure scenario, having 
an adaptable algorithm can alleviate much of the complexity of designing a 
control algorithm that accounts for every possible scenario. 

4.3.3 Intelligent Flight Control 

Intelligent flight control is listed under robotics because in most of these 
systems, the neural networks act autonomously to change the behavior of the 
aircraft. NASA has been studying intelligent flight control for at least the 
past ten years. These systems can vary in the degree of control the neural 
network is given within the system. 

The IPCS Gen 1 system used two different neural networks. As this was 
one of the first flight-tested neural network flight control systems, strong 
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limitations were placed upon the neural networks within the system. The 
PTNN was fixed and did not adapt during system operation. Instead of 
computing aircraft gains and feeding them directly into surface controls, the 
PTNN only provided data to other parts of the flight controller that then 
carried out their own computations. The DCS only augmented the 
knowledge of the PTNN. It too was limited in its effect on the system. 

The second generation allowed the neural network more control within 
the system. The job of the online adaptive component was to improve error 
tracking and provide direct feedback into a dynamic inversion module. This 
dynamic inversion module computed the aircraft controls and the neural 
networks were a more integral part of that computation than they were for 
the first generation. 

Subsequent generations will probably make the neural network modules 
even more integral to the system. Their continued use and rise in importance 
within intelligent flight control is tied directly to the success of the V&V 
practitioner to certify the system. These neural network solutions will not 
fade away because the research conducted by NASA has shown that great 
improvements can be made to a flight control system through adaptation to 
accommodate failure or damage. 

4.4 Expert Systems 

Expert Systems are generally thought of as being symbolic, rule-based 
systems. However, neural networks also can be trained to perform expert 
tasks—^tasks that have been viewed as requiring some level of expertise, or 
knowledge (knowledge-based systems). Of course, the manner in which the 
expertise is encoded in a neural network is radically different than a set of 
human-readable rules. Their use includes such complex analysis as required 
for medical diagnosis, system diagnosis, and financial analysis. 

Sometimes the required knowledge is not explicitly documented, or even 
consciously known, but must be extracted from actual data. This is the 
realm of data mining [Miiller 2000]. In contrast to the prior discussion of 
pattern recognition, where at least the pattern to be recognized is known, 
data mining is focused on identifying previously unrecognized patterns. 

Group Method of Data Handling theory and its applications is one 
example of efforts at the propagation of inductive self-organizing methods to 
the solution of complex practical problems [Madala 1994]. 

4.4.1 Diagnosis 

One such diagnostic application is a diagnosis system that can detect 
engine misfire simply from the noise. Kemsley [1992] discusses the system 
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developed by Odin Corp., which works to detect misfires on engines that run 
upwards of 10,000 rpms. The benefit is that misfires are thought to be a 
leading cause of pollution and detection and accommodation of misfires 
could reduce the problem. 

A most likely area involving diagnosis that the V&V practitioner will 
encounter is in the area of intelligent vehicle health monitoring. Systems 
that are expected to operate for long periods of time without human 
interaction will require this technology in order to detect failures in the 
system and make corrections. Expected benefits are for satellites, remote 
robotic exploration, and even military and commercial aircraft that can 
diagnose an impending problem and report it immediately to the pilot. 

Another field within neural network diagnosis is the recognition of 
patterns within the sensor data of the medical industry [Lisboa 1999]. A 
neural network is now being used in the scanning of PAP smears. This 
network attempts to do a better job at reading the smears than can the 
average lab technician. Missed diagnosis in this industry can be a serious 
problem. In many cases, a professional must perceive patterns from noise, 
such as identifying a fracture from an X-ray or cancer from an X-ray 
"shadow." Neural networks promise, particularly when faster hardware 
becomes available, help in many areas of the medical profession where data 
is hard to read. 

In some situations, the diagnosis system is merely used for filtering out 
false-positives rather than being the upfront evaluation. This is because the 
system is considered more trustable when it isn't making a life-or-death 
diagnosis. The V&V practitioner may encounter this technology as it moves 
into the realm of first stage detection. 

4.4.2 Financial 

While it is unlikely that a V&V practitioner will see neural networks 
projects within the realm of financial analysis, this commercial area does 
deserve some recognition. As mentioned during the introduction to this 
section, lending institutions are making use of neural networks to identify 
expected success/failure of possible loans. Telemarketers also make use of 
similar technology by applying data mining techniques to their databases to 
identify combinations for higher positive responses to their product. This 
includes identifying households with larger families, identifying better times 
to call a household, and extracting information on household purchasing 
habits, all much to the chagrin to the American public. 

Neural networks are also used in making decisions within the financial 
market such as stock trading and currency trading. By analyzing the trends 
of a particular stock or currency, and learning the behavior of the item over 
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time and against multiple variables, one can improve the decision making 
process of selecting highs and lows. Anderson [1992] reports that the Daiwa 
Research Institute developed a neural network stock system which scored up 
to 20% better than the Nikkei average and can boost successful hit rates by 
as much as 70 - 80%. 

4.5 Mission-critical and Safety-critical Applications 

Many more examples could be provided. Neural networks are being 
more frequently developed and deployed in applications that would be 
termed mission critical or safety critical While much concern still exists 
regarding the employment of neural networks in such areas, the research to 
address this need is making considerable progress. The following is a list of 
recent survey papers covering various application areas where neural 
network solutions now are finding ever-widening acceptance: 

• Neural networks as data mining tools in drug design [Gasteiger 2003] 
• An introduction to bio-inspired artificial neural network architectures 

[Fasel 2003] 
• Nonlinear image processing using artificial neural networks [De Ridder 

2003] 
• Logistic regression and artificial neural network classification models: a 

methodology review [Dreiseitl 2002] 
• Evaluation of inherent performance of intelligent medical decision 

support systems: utilizing neural networks as an example [Smith 2003] 
• Image processing with neural networks - a review [Egmont-Petersen 

2002] 
• Neural networks as an intelligence amplification tool: A review of 

applications [Poulton 2002] 
• A review of evidence of health benefit from artificial neural networks in 

medical intervention [Lisboa 2002] 
• Neural-network models of learning and memory: leading questions and 

an emerging framework [Carpenter 2001] 
• A brief overview and introduction to artificial neural networks [Buscema 

2002] 

Some of these papers not only discuss the employment of neural 
networks in a particular application domain, but also consider the V&V 
implications that their use raises for that application domain [Smith 2003; 
Lisboa 2002]. 
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5. SUMMARY 

The purpose of the material in this chapter is to aid the V&V practitioner 
with the validation, of a proposed or implemented neural network-based 
system. Validation involves the assessment of the appropriateness of a 
particular neural network-based solution for the problem being solved 

This chapter has presented a taxonomic overview of neural network 
systems from multiple perspectives. Major characteristics of applications 
and their solution via neural networks have been presented. 

At the highest level, the issue addressed here is whether any neural 
network architecture could be an appropriate choice for the problem being 
solved. Given that a particular neural network model should be able to solve 
the problem, the next major concern is to focus upon the supporting 
requirements that should be addressed, e.g., the particular neural network 
architecture. 
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1. INTRODUCTION 

Neural networks are key elements in the implementation of adaptive 
software. Fixed structure neural networks such as multi-layer perceptrons 
and higher-order neural networks have a well-established history as 
controllers for a variety of systems in industry. More complicated neural 
networks such as dynamic self-organizing maps and systems of neural 
networks are being used as more flexible architectures are needed for 
deployment in more complex environments. In this section, the stability and 
convergence properties of a few classes of neural networks are explored and 
an overview of the techniques used to analyze their behavior is given. 

A common approach to analyzing neural network behavior is to view the 
learning mechanism of the network as a dynamical system in the sense that 
each neuron and weight in the network represents a state of the system and 
each training adjustment represents a discrete differential equation for the 
system. 

!•! Lyapunov Stability 

It is a general observation that the process of adaptation in online 
learning neural networks resembles in many ways the behavior of dynamical 
systems [Yerramalla 2003a]. Based on the interpretation of neural networks 
as a dynamical system, the stability and convergence of online adaptation 
can be considered as heuristic measures of correctness for the sake of system 
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safety. The idea is to first characterize the process of online adaptation in 
neural networks in the context of dynamical systems and then apply existing 
dynamical system stability analysis techniques for neural network analysis. 
One of the foremost dynamical stability analysis techniques is based on 
Lyapunov stability theory. The interesting feature about Lyapunov stability 
analysis is that it can be systematically applied to validate the existence (or 
nonexistence) of stable states in dynamical systems [McConley 1998]. 

The objective of this chapter is to develop a framework for a non-
conventional V&V procedure suitable for evaluation and testing of non-
deterministic neural networks. Since the concept of applying Lyapunov 
theory for stability analysis of neural networks is a relatively novel 
validation approach, this section provides the reader with a basic 
understanding of the fundamental concepts of stability according to 
Lyapunov's theory. For additional details on the use of Lyapunov's theory 
for stability analysis of dynamical systems the reader is referred to [Passino 
1994]. 

1.2 Stability of Dynamical Systems 

A dynamical system is an evolution rule on a set of states, the phase 
space, defined as a function of time as a parameter. The evolution rule can 
be deterministic or stochastic, depending on the nature of the system. A 
system is deterministic if for each state in the phase space there is a unique 
consequent, i.e., the evolution rule is a function taking a given state to a 
unique, subsequent state. Stochastic systems are non-deterministic: a 
standard example is the idealized coin toss. The process of adaptation in 
neural networks evolves over time in an unpredictable manner, and therefore 
is mostly stochastic and can be characterized in context of stochastic 
dynamical systems. 

The mathematical theory of stability analysis deals with validating the 
existence (or nonexistence) of stable states within a dynamical system using 
rigorous mathematical proofs and analysis techniques. Stability of a 
dynamical system is usually defined in terms of the system's equilibrium 
point and not the system. Therefore, it is necessary to understand the 
definition of an equilibrium point of a dynamical system. 

Definition 5.1 Equilibrium Point: Consider a nonlinear time-invariant 
r IT' 

system, x = / ( x ) , where x = [XpX2v9-^wJ ^̂ ^ ^^'^ states of the system, 
/ : Q —> 9t" is a continuously differentiable function, and Q c 9t" is a 
subset of Euclidean space. A point, x^ G Q , is an equilibrium point of the 
system if / ( x j = 0. 

It should be noted that x^ is an equilibrium point : ^ x(/) = x^ is a 
trajectory of the system. Considering the origin as the equilibrium point of 
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x = / ( x ) , i.e., x^ = 0 , the following definitions introduce the notion of 
stability of dynamical systems. For further details on the concept of stability 
of dynamical systems, the reader is referred to [Friedland 1996; Passino 
1994]. 

Definition 5.2 Local Stability: If for every ^ > 0, and /̂  G 9t, there 
exists d{£,t^)>0 such that if |x(/o)|< J then |x(/)|<6^ for all t>tQ, 
then the equilibrium point x^ = 0 of the systemx = / ( x ) is said to be 
locally stable at time t^. 

The concept of stability given in Definition 5.2 is illustrated in Fig. 5-1, 
where a system's trajectory starting close to the equilibrium is shown to 
remain arbitrarily close. Note that in the case of Fig. 5-1, the equilibrium 
point is the origin, x^ = (0,0) . An equilibrium state is unstable if the above 
condition is not satisfied. In linear systems, instability means approaching 
different trajectories arbitrarily close in any given time. However, this is not 
the case with nonlinear systems, which makes nonlinear stability analysis a 
challenge. 

X2 

-•^^ 

Qs Locally Stable 

2 = Unstable 

p = Asjmiptotically Stable 

Figure 5-1. Graphical Illustration of the Concept of Local Stability for a Dynamical System 
(The system's equilibrium point is assumed as the origin) 

Definition 5.3 Local Asymptotic Stability: If the equilibrium point 
x^ = 0 is locally stable and if for every /̂  G 9t, there exists d{t^) > 0 such 
that if |X( /Q) |<(^ then |x(^)|-^0 as / —> ©o , then the equilibrium point 
x^ = 0 is said to be locally asymptotically stable. 

In other words, Definition 5.3 implies that a system trajectory starting 
sufficiently close to the equilibrium point will eventually approach the 
equilibrium point, i.e., the origin. 
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Definition 5.4 Global Asymptotic Stability: If the equilibrium point 
x^ = 0 is locally stable and if for every initial condition x(^o) , |x(^)| -> 0 
as t ^ oo ^ then the equilibrium point x^ = 0 is said to be globally 
asymptotically stable. 

Definition 5.4 implies that if the asymptotic stability condition holds for 
any initial condition, then it can be said the equilibrium point of the 
dynamical system is global asymptotically stable. 

1.3 Lyapunov Function Based Stability Analysis 

Most of the previously discussed notions of stability are based on the 
solution (equilibrium point) for the difference equation governing the system 
dynamics. In general, it is inherently difficult to solve higher order 
difference equations, and there is no guarantee for the existence of a solution 
for certain higher order nonlinear difference equations. This difficulty in 
finding a solution for the difference equations can be overcome by the 
construction of a Lyapunov function. A unique feature about Lyapunov 
function-based stability analysis is that one establishes conclusions about 
trajectories of a system without actually finding the trajectories, i.e., solving 
the difference equations. 

Definition 5.5 Lyapunov Function: If V \%" -^^ is continually 
differentiable and locally positive definite function around x^ = 0 such that 
all sublevels of V are bounded and F(x) < 0 Vx, then all trajectories of 
the system x = / ( x ) are bounded and V is called the Lyapunov function. 

The relevant result of Lyapunov stability theory in terms of a Lyapunov 
function is given in the following theorem. For a detailed proof for the 
following theorem, the reader is referred to [Friedland 1996, Zubov 1957]. 

Theorem 5.1 Lyapunov Stability: If there exists a Lyapunov function 
for the system x = / ( x ) , then x^ = 0 is said to be a stable equilibrium 
point in the sense of Lyapunov. 

According to Lyapunov theory, a system is said to be stable near a given 
solution if all solutions of the state that begin nearby end up nearby. A good 
measure representing the notion of "nearby" is the size of the domain of the 
Lyapunov function by a Lyapunov function, V over the states of the system. 

By constructing the function V, all trajectories of the system can be 
guaranteed to converge to a stable state, i.e., if they lie in the domain of the 
definition of V . The function V should be constructed keeping in mind that 
it needs be scalar F : 9t X D ^ 9t and should be non-increasing over the 
trajectories of the state space (at least negative semi-definite). This is 
required in order to ensure that all limit points of any trajectory are 
stationary. A strict Lyapunov function should force every trajectory to 
asymptotically approach equilibrium state. Even for a non-strict Lyapunov 
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function, it is possible to guarantee convergence by LaSalle's invariance 
principle. For detailed proofs for the following theorems, the reader is 
referred to [Zubov 1957, Friedland 1996, Bhatia 1970]. 

Theorem 5.2 Asymptotic Stability: If x^ = 0 in addition to being 
Lyapunov stable, V{x) is locally negative definite, then x^ = 0 is a 
asymptotically stable equilibrium point. 

Asymptotic stability adds the property that in a region surrounding a 
solution of the dynamical system trajectories are approaching this given 
solution asymptotically. 

Theorem 5.3 Global Asymptotic Stability: If x^ = 0 in addition to 
being Lyapunov stable, V{x) is negative definite in the entire state space 
and limK(x) = 0, then x^ = 0 is a global asymptotically stable equilibrium 
poinf."̂ "" 

A notable difference between asymptotic and global asymptotic stability 
is the fact that the latter implies that any trajectory beginning at any initial 
point will converge asymptotically to the given solution unlike the former 
where only those trajectories beginning in the neighborhood of the solution 
approach the solution asymptotically. The types of stability defined above 
have increasing property strength, i.e.. Global Asymptotic Stability =^ 
Asymptotic Stability => Lyapunov Stability. The reverse implication 
however, does not necessarily hold. 

Though the concept of Lyapunov stability was originally intended for use 
in mathematical theory, it can be simplified for use in many practical 
applications including neural networks [Yerramalla 2003a; Yu 2001]. In 
mechanical systems, a Lyapunov function is considered as an energy-
minimizing term and in economy and finance evaluations it is considered as 
a cost-minimizing term, and for neural networks, the construction of a 
Lyapunov function can be based on the error-minimizing states of the neural 
network learning. 

The central goal of an adaptive system is to calculate the present state of 
the system and determine a strategy to drive the system to a desired 
operating state. It must be realized that by accommodating for changing 
dynamics of the system, online adaptive components play a critical role in 
the functionality of the adaptive system. Therefore, it is necessary to ensure 
correct behavior of the online adaptive components before their deployment 
into the actual safety-critical system [Hull 2002, Schumann 2002, Taylor 
2003]. 

A provably stabilizing online adaptation ensures that the learning in an 
embedded adaptive component converges to a stable state within a 
reasonable amount of time without bifurcating towards instability. In the 
context of the V&V of online adaptation, the goal of theoretical stability 
analysis is to delineate stability boundaries of online adaptation for certain 
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specific domains of adaptive system data using mathematical theories of 
stability analysis. 

1. APPLICATIONS TO FIXED TOPOLOGY 
NEURAL NETWORKS 

Several authors have applied Lyapunov theory to the study of neural 
network behavior. Calise, et al. [Calise 2001] have shown that certain neural 
networks with fixed connectivity such as Sigma-Pi neural networks evolve 
stably over time. In their work, a traditional Sigma-Pi architecture is 
adopted and an error measure for network performance is defined. Fig. 5-2 
is a representation of a typical Sigma-Pi neural network. 

Figure 5-2. A Sigma-Pi Neural Network with Inputs xl, x2, x3 

In the figure, the nodes of the network (circles) take sums and products 
of the inputs that are weighted by values associated to the connections 
(arrows). These weights are modified during training using a back-
propagation algorithm which attempts to minimize the error of the network. 
In this way a function, usually a polynomial of some specified degree, is 
constructed that approximates the values of the data signal being analyzed 
by the neural network. In [Kim 2003] the error between the signal and the 
approximation is combined with the update rule to define a Lyapunov 
function for the online neural network. The reader is referred to their work 
for more details. 



Stability Properties of Neural Networks 103 

3. APPLICATION TO SELF-ORGANIZING MAPS 

Self-organizing maps (SOM) pose a different kind of problem for this 
type of analysis. Many authors have attempted to understand the behavior of 
self-organizing maps using Lyapunov theory. Cottrell and others [Cottrell 
1998] have shown that fixed topology self-organizing maps admit Lyapunov 
functions only in dimension one. It is conjectured that no Lyapunov 
function exists for higher dimensional fixed topology SOMs. 

SOMs in their most general form are vector quantizers in the sense that 
they partition a set of data into clusters that are then represented by vectors 
called neurons that are then connected to each other. In the case of fixed 
topology SOMs, there are a fixed number of neurons and each is connected 
to the same set of neurons in the network for the entire training cycle. 
Adaptation occurs when neurons are moved in order to find the minimum 
Euclidean distance between that neuron and the data points it represents. 
This best-matching neuron or best matching unit (BMU) for a subset of the 
data is stimulated by the data in this way during training. In the case of 
dynamic SOMs, the number of neurons may change as well as the 
connectivity of the network. This allows for greater flexibility in training, 
particularly when the data being analyzed is multi-dimensional. 

An example of a dynamically changing SOM is the Dynamic Cell 
Structures (DCS) neural network [Bruske 1995]. To illustrate how 
Lyapunov theory can be applied here, the following questions should be 
answered: 

• How can a systematic approach to delineate stability boundaries of online 
adaptation in a dynamic self-organizing neural network such as the DCS 
be derived? 

• To what specific domains of the adaptive system data are the delineated 
stability boundaries confined? 

It is observed as a part of the ongoing research that the learning process 
in neural networks evolves over time in a manner similar to the behavior of 
dynamical systems [Yerramalla 2003b, Yerramalla 2004]. The idea then is to 
characterize neural network learning in the context of dynamical systems 
and analyze its stability properties using dynamical system analysis 
techniques. One of the foremost dynamical system stability analysis 
techniques is Lyapunov's theory. The interesting feature about Lyapunov's 
stability theory is that it can be systematically applied to validate the 
existence (or nonexistence) of stable states in a dynamical system. The 
research therefore, proposes the extension of the Lyapunov's stability theory 
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for analysis of the stability properties of online learning DCS neural 
network. 

Due to the stochastic nature of learning in self-organizing neural 
networks, the stability analysis in this chapter is restricted to neural network 
adaptation from stationary or fixed data manifolds. Learning from a 
stationary data manifold implies that once a certain data manifold is 
presented to the online adaptive component (neural network), the 
configuration of the data remains unchanged throughout the learning 
process. 

3,1 Dynamics of DCS Neural Network 

This section aims to characterize the learning process in neural networks 
in the context of a dynamical system. The first step in this stability analysis 
is the identification of stable-states involved in the DCS neural network. The 
learning process involved in the DCS was discussed elsewhere in this work. 
A state-space representation is a commonly preferred method for 
representation of the states within a dynamical system. It is important to 
represent the states of the dynamical system (online learning neural network) 
using a state-space representation technique as it can prove to be effective 
during the construction of a Lyapunov ftinction. 

Consider D-dimensional input and output manifolds, I c 9t and 
0 c: 9t^, respectively. The DCS is a self-organizing neural network 
consisting of neurons that are positioned in the output space O d 9t using 
weight vectors. Consider N as the number of neurons in the DCS network at 
any time. The weight vectors of the DCS neural network can be then be 
represented as, w^EO(z9 t^ V / G {l,2,...,A^}. The lateral connections 
between neurons in the DCS are expressed in terms of real constants known 
as connection strengths, c^j = c^^ G [0,1] V/ ^ j i,je {l,2,..., A/̂ }. Unlike 
feed-forward neural networks, the lateral connections between neurons in a 
self-organizing neural network are not static but evolve over time [Ahrns 
1995, Bruske 1995]. A D-dimensional DCS neural network consisting of N 
neurons can therefore be represented in the output space O cz 9t using a 
DxN position matrix, W^^^ 3 w^ and a NxN connection strength 
matrix, Ĉ ^̂ ^̂  3 c^. For a given input space I cz 9t , the DCS is essenfially 
an undirected graph of W >̂̂ ^ and C^^^^ that can be defined in the 
following manner. 

Definition 5.5 DCS Neural Network Mapping: For a given input space, 
1 c 9t^, the DCS neural network mapping is an undirected graph of W^̂ ^̂  
and C^^^ , G ( W ^ ^ ^ , C ^ ^ ^ ) : I e 9 t ^ -^ O C 9 t ^ that can be considered 
as an Â ^̂  order neural network representation of the input manifold. 



Stability Properties of Neural Networks 105 

M cz I CI 9?^ in the output space, O c: 9t^ generated by assigning Â  neural 
units using the DCS training algorithm. 

3.2 State-Space Representation of the DCS Neural 
Network 

Based on the Hebb and a Kohonen-like adaptation rules, a state-space 
representation of the DCS neural network is provided. Let the states of the 
DCS neural network due to the adaptation of weight vectors using a 
Kohonen-like rule and the Hebb update be represented by x^ and x^ 
respectively. The dynamics of the state changes in the DCS due to the 
adaptation of weight vectors using a Kohonen-like rule and the Hebb rule 
can be represented in the following manner. 

Ax^ 

A^ 
— Jwv^w^^c) (5.1) 

• Jcv^ci^w ) (5.2) 

The nonlinear functions / ^ , / ^ : I d 9t -^ O cz 9t are continuous 
and provide the required adjustments to the states x^ and x^ respectively 
of the DCS neural network. Considering the DCS as a discrete-time 
dynamical system, the states of the DCS training algorithm can be 
represented in the following manner in a state-space representation form 
using Eq. (5.1) and Eq. (5.2). 

AX 

A^ 

"Ax^" 

At 

_ At _ 

= 
Jcv^c^^w)_ 

(5.3) 

3.3 Construction of a Lyapunov Function for the DCS 
Neural Network 

Lyapunov's direct method (also known as Lyapunov's second method) in 
particular can be easily and systematically appHed to validate the existence 
of stable states of nonlinear dynamical systems. In order to extend its use for 
the online learning DCS neural network, one first needs to construct a 
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Lyapunov function based on the states of the neural network training 
algorithm (Eq. 5.3). 

The goal of the DCS is to overlay neurons (using weight vectors) over 
the presented data manifold in a topology-preserving manner such that 
nearby data patterns are mapped using neighboring neurons of the DCS 
network [Ahrns 1995, Bruske 1995]. In order to generate a topology-
preserving feature map of the presented data manifold, M d I c: 9t^, the 
DCS network is initialized with two neurons that are connected to each other 
with connection strength of value 1. If it is determined that the error in the 
DCS network falls below a predefined threshold, additional neurons are 
introduced into the network. This process is repeated until the map 
generated by the DCS reaches a pre-specified degree of accuracy in its 
representation of the presented data [Yerramalla 2003b]. 

The addition of new neurons into the DCS network is based on resource 
values, a local error associated with every DCS neuron. In most cases, the 
Euclidean distance between the data patterns of the training data manifold, 
m G M d I c 9?^ and the positions of the best matching units, 
^hmu ^ ^DxN ^ O CI 9t scrvcs as a measure for resource. Since resource 
is a measure of the local error associated with each neuron, an average 
resource value can serve the purpose of a Lyapunov function for the DCS 
neural network. While considering the DCS adaptation as a discrete-time 
dynamical system, the end of a learning cycle followed by the addition of a 
new neuron can be treated as a time step. A Lyapunov function for the DCS 
can then be formulated in the following manner. 

a 
VmeM 

n>-w,„,„(„)|| 

N 
(5.4) 

The Lyapunov function of Eq. (5.4) is the average resource value of the 
neural network that in essence is a measure the amount of topology of the 
input data manifold that is being preserved by the map generated by the 
neural network. The constructed Lyapunov function of Eq. (5.4) is known in 
the neural network community as the quantization error. 

Using this framework, the following can be stated: 
Theorem 5.4: Let ^(G,/): O e 9 t ^ ^ 9 t be a scalar function 

constructed for the map G(M, W^^^, C^^^): I c St"" ^ O e gi"" 
generated by the online learning neural network from an input manifold 
M c I d 9t^ . If M remains fixed, then for any^ > 0, an integer S>Q can 
be found such that for all / > J , V{G, t) < £, 

This result holds as long as the input data being trained by the neural 
network is fixed. In the case of online training where data may be 
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dynamically changing as well, another approach must be taken. This is the 
subject of another chapter in this work. 

4, SUMMARY 

Lyapunov theory is a powerful tool for understanding the stability of 
neural networks. Once a measure of error is defined for the system, suitable 
Lyapunov functions can be described which then provide a rigorous 
characterization of network behavior across all of the possible set of states 
for the network for which the Lyapunov function is defined. In combination 
with probabilistic methods such as those of Schumann and Gupta 
[Schumann 2003], a high degree of reliability may be obtained for systems 
that integrate neural networks into their structure. 
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Chapter 6 

NEURAL NETWORK VERIFICATION 

James T. Smith 
Institute for Scientific Research, Inc. 

1. INTRODUCTION 

Neural network-based systems have truly become mainstream with their 
employment in safety- and mission-critical applications. Because a neural 
network is an empirical model, the model design and data requirements 
replace the functions served by knowledge representation and acquisition in 
symbolic reasoning. Issues and considerations that are deemed substantial 
regarding the assessment of neural network systems include: 

• Assessing the quality of training and testing data, 
• Relating training and testing data to defined safety margins, and 
• Tracing neural network design features to overall specification 

requirements at the system level. 

Critical issues of particular relevance to the V&V of neural networks 
include: 

• Focusing in areas where significant data are available for training, 
• Addressing difficulties with scaling systems from prototypes to full 

deployment, and 
Evaluating the system using real data. • 

The neural network system development lifecycle is very similar to that 
for decision systems involving statistical modules. Neural network system 
lifecycle stages also have parallels with the corresponding stages in the 
design of knowledge-based systems and to any inference system with 
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substantial nonlinear components, whether using symbolic or distributed 
knowledge representations. However, the technical aspects of verification of 
neural network systems at the systems, integration, and unit levels have not 
been generally established. 

This chapter examines the considerations and issues listed above in an 
attempt to provide the V&V practitioner a comprehensive view of how the 
generic verification process can be particularized to the verification of neural 
network-based systems. 

1.1 Setting the Stage: Framing the Issues 

The following quote from "Industrial Use of Safety-Related Artificial 
Neural Networks" [Lisboa 2001] identifies the need for the integration of 
additional neural network-specific methods with the more traditional linear 
design and verification methods that already are well understood. 

It is clear from the applications reviewed that the key to successful 
transfer of neural networks to the marketplace is successful integration 
with routine practice, rather than optimization for the idealized 
environments where much of the current development effort takes place. 
This requires the ability to evaluate their empirically derived response 
using structured domain knowledge, as well as performance testing. In 
controller design, the scalability of solutions to production models, and 
the need to maintain safe and efficient operation under plant wear, have 
led to the integration of linear design methods with neural network 
architectures. [Lisboa 2001] 

In particular, Dr. Lisboa then identifies the need for additional research in 
two directions. The first is to systematize current best practice in the design 
of a wide range of quite different neural computing systems, some for static 
pattern recognition, others for control, some in software and others 
embedded in hardware. The second is to formulate a unified perspective of 
each stage in the development lifecycle of high-complexity computation in 
safety-related applications, spanning the full range from empirical to 
structural process models. [Lisboa 2001] 

He then offers a warning to the V&V practitioner regarding where most 
additional effort will be required. "In emerging computation, the complexity 
is often not in the software implementation, but in the interpretation and 
testing required to evaluate the operation of the model." 
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1.2 Expanding the Generic Software Lifecycle for 
Neural Networks 

A generic lifecycle for computer systems incorporating neural network 
system components may be expressed in any of the standard ways. One 
such representation based on that used by the U.S. Food and Drug 
Administration in their software guidance for reviewers and industry [FDA 
1998] is shown in Fig. 6-1. 

Requirements Systems 
1. Analysis & Z.^^V®"" Level 

Specification ^^^'"^*'°" 

Functional Intearation Integration 
2. Specification & 6. '"^^S/.^^^ Level 

Data Requirements '®^̂ '"̂  

o .« ^ , PN • c Validation of Model 
3.Model Design 5. p̂ ^̂ .̂ ,,̂ ^̂  unit 

Level 

4 Implementation 
& Training 

Figure 6-1. Generic Software Lifecycle Model 

In tracing through the blocks in Fig. 6-1, Dr. Lisboa expressed the 
following observations and caveats of which both the designer and the V&V 
practitioner of neural network systems should be aware: 

1. Expressing system requirements involves specifying against unwanted 
behavior in responses to unforeseen sequences of events. This point 
indicates the need not only to verify how the system performs under 
expected conditions, but also how the system reacts to unforeseen events. 
The handling of such events must be addressed not only for operational 
mode but also in regards to the training that the neural network receives. 

2. Knowledge representation impacts generalization ability, i.e. correct 
operation for future situations. In particular, human expertise is not 
always consistent and complete and can be difficult to capture into an 
algorithmic representation. This point calls attention to the importance 
of the underlying knowledge representation in the ability of a system to 
generalize its applicability beyond a rigid constrained subset of a 
problem domain. The representational power of a neural network 
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depends not only upon the neural network architecture and topology, but 
also on other considerations such as choice of transfer function, learning 
rule, selection of training epochs, and mode of supervision. 

3. There appears to be a convergence of knowledge-based, neural 
computing, and statistical modeling approaches. This point describes a 
convergence of system development methodologies that will necessarily 
require corresponding convergence of V&V practices. In particular, the 
methods of one approach can be used to provide an external consistency 
check for the use of those methods of the other approaches. 

4. Assessing convergence in a neural network-based system is equivalent to 
achieving consistency. This point notes that the convergence of an 
online-learning neural network (OLNN) to ever improving outputs as it 
continues to learn is equivalent to the statistical concept of consistency 
for nonparametric estimators. 

5. The need for independent assessment by agents external to the original 
design process should be emphasized. This point currently is being 
addressed through such concepts as novelty detection [Marsland 2003]. 
This is partly due to the need to ascertain and automatically signal if the 
inference is extrapolating outside, rather than interpolating within, the 
neural network's knowledge base. The V&V of the neural network is not 
complete without also addressing the appropriateness of these external 
agents. 

6. Transparency of inferences is difficult for any complex system, and 
particularly so when knowledge is distributed. This point has become 
critical as neural network systems become increasingly large and 
complex. The traceability of their operation by direct inspection of the 
weights and hidden node activations in response to specific test patterns 
may not be sufficient to enable verification against established domain 
expertise. Methods such as rule extraction and decision tree extraction 
are examples of efforts to better infer and describe what the neural 
network "knows" [Darbari 2000, van der Zwaag 2002]. 

7. Any system may in principle be consistent and complete by design, yet 
contain knowledge that is incorrect. This point leads to the following 
observation: V&V requires adherence to formal methodologies at each 
level of the design lifecycle. However, where non-linear inferences from 
real-world data are involved, the emphasis appears to be shifting towards 
extensive trials with external data. 
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1.3 Verification Considerations for Neural Networks 

The major considerations for the verification of a neural network system 
thus revolve around its realization: "Was it implemented as intended?" and 
its functionality: "Does it perform as expected?" More formally, these 
concepts may be defined thus: 

• Realization is concerned with existence: what the neural network system 
is, what its components are, and how the network is put together. 

• Functionality is concerned with purpose and action: what the neural 
network system does, how well it does what it does, and how its activity 
relates to the problem it is supposed to address. 

The two areas, realization and functionality, approach the verification 
process from different perspectives. 

Verification of the realization of the neural network based system is 
focused on assuring that the system has the appropriate resources, 
organization, data flow, etc. to perform the tasks or to satisfy the purpose for 
which it is developed. Realization verification is more static and precise: it 
performs an assessment of what the system, when properly implemented, 
could and should be capable of performing. Realization verification 
confirms that the system is "a completed operable body awaiting life to be 
breathed into it," that it is able and ready to begin functioning as intended. 

Verification of the functionality of the system is focused on assuring that 
the system executes as planned and that the execution accomplishes what is 
expected of it within the bounds and constraints set for it. Functionality 
verification is more dynamic and qualitative: it performs an assessment of 
what level or degree of functionality is ultimately demonstrated regarding 
the system. 

The various perspectives overlap, at least in the supporting tools and 
techniques they may employ. However, the questions that are raised, and 
the results and conclusions being sought are different. The functional or 
integration testing of the system involves evaluation of the total system 
package - including the neural network architecture, neural network 
parameters (e.g., number of nodes, transfer function), the learning algorithm, 
and the actual training epochs. Before the system components are brought 
together for such verification, each individual component should be verified 
independent of the others. 

In addition to and dependent upon the above core dimensions of neural 
network verification are two other potentially critical aspects of neural 
network verification. They are: 
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• Adaptation, which is concerned with what modifications to a system's 
structure and behavior are permitted over time, and how well they are 
implemented, and 

• Fault management, which is concerned with protecting a system from 
potential failures, whether due to its environment or to itself 

The requirements for which an adaptive system is designed necessarily 
include statements regarding what the nature of the adaptation is to be. Two 
examples of adaptation types are supervised vs. unsupervised or explicitly 
bounded and focused vs. open-ended where the adaptation is limited only by 
the capabilities and resources of the underlying computing platform. The 
adaptation can involve changes in the system's architecture and thus 
realization, as well as changes in its behavior, or functionality. That the 
developed system indeed satisfies the described adaptation strategy must be 
verified. Each of these adaptation choices will affect the approaches taken 
to verify the system. 

Complex systems may be safety critical, where human safety is at risk, or 
mission critical, where system failure could impact the total mission the 
system is supporting. The purpose of fault management is to enable a 
complex system to continue to perform through faulty situations less than 
optimally, intended, or desired, and yet well enough to accomplish 
significant aspects of the original task (mission preserving) and without loss 
of life (risk aversion). Evaluation of how well a system achieves this goal 
must be part of the total verification process. 

1,4 Organization of the Chapter 

The rest of this chapter addresses Dr. Lisboa's seven points in section 1.2 
with further discussion based upon the four verification considerations from 
section 1.3 (realization, functionality, adaptive systems, and fault-
management). Section 2.1 Realization Verification, addresses points 2, 6, 
and 7. Section 2.2 Functionality Verification, discusses points 6 and 7 with 
further detail. Section 2.3 Adaptive Systems Verification discusses points 3 
and 4. Section 2.4 Fault Management-Based Verification addresses points 1 
and 5. 

2. NEURAL NETWORK VERIFICATION 

Neural network-based systems have truly become mainstream with their 
employment in safety- and mission-critical applications. They are being 
used in cutting edge research conducted by NASA and the U.S. Department 
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of Defense as well as finding uses within commercial technologies including 
medical and automotive devices. This section will discuss the verification 
techniques needed to provide software assurance for these highly critical 
adaptive systems. 

2.1 Realization Verification 

Realization verification is essentially a white-box testing activity. The 
system components must be produced to specification. They must fit 
together properly, which can involve many aspects. In the case of digital 
information processing, for example, communications interfaces and 
protocols must be properly implemented among the individual internal 
components, as well as externally with the environment of the system. The 
components must share the available resources that can consist of time 
allocation, memory, processing elements, and external interfaces. 

In the case of a neural network system, the major components required 
for the realization are: 

• Structure, which is its architecture, or topology, and parameterization, 
and 

• Knowledge, which is captured (encapsulated) within that structure. 

The neural network structure will typically be realized as some 
combination of neural network architecture and neural network 
parameterization. Some of the more common neural network architectures 
include the multi-layer perceptron (MLP), self-organizing map (SOM), and 
radial basis function (RBF). The parameterization can control the specifics 
of the architecture or the architecture functionality. Example 
parameterizations would be the number of layers, number of nodes, or 
choice of transfer functions. 

The knowledge of a neural network is encapsulated implicitly within the 
neural network by the connections between nodes, the weights stored with 
the node, and the transfer functions applied to the various links between 
connected nodes. Knowledge must be ingested into the system and 
demonstrated empirically through the use of appropriate training and testing 
examples. 

These two major components of a neural network based system, its 
architecture and its knowledge, need to be evaluated from the following 
perspectives: 

• Independently, or component-wise, as to how well each accomplishes its 
intended purpose, and 
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• Systemically, or collectively, in terms of their fit, or appropriateness, to 
each other, so that the sum of the parts indeed equals the whole. 

These two components, architecture and knowledge, need to be verified 
independently and systemically as if they represented interoperable 
components of a final product. In particular for neural network systems, 
there is a need to verify the appropriateness of the neural network structure 
(architecture and architecture parameters) against the type of knowledge to 
be encoded and training to be performed. Such verification involves an 
analysis of the potential of success for encoding and for utilizing the 
knowledge with the given neural network architecture. 

In Chapter 4, the discussion of validation addresses the appropriateness 
of various neural network architectures, learning rules, etc. to adequately 
encapsulate or represent the necessary knowledge, and to respond with 
appropriate outputs to given sets of inputs. A set of guidelines and 
suggested mappings of various problem domain classes to generally 
appropriate neural network architectures is provided. The reader may wish 
to review that chapter at this point. 

The purpose of verification at this same systems level is to confirm the 
accuracy of such determinations made regarding the specific system as part 
of its validation. Specific to neural network systems, each of the following 
major verification tasks are considered: 

• Verify the neural network structure as an independent system component. 
The verification of the neural network structure includes correct use of 
hardware, implementation of software, and selection of system 
parameters. 

• Verify the knowledge sources to be encoded. The knowledge sources 
should be analyzed for completeness, consistency, quality, and accuracy. 
External checks and balances that are supposed to assure the required 
levels are achieved should be verified. In the case of online learning 
systems, the consistency of the knowledge and the maintenance of these 
checks and balances over time also must be addressed. 

• Verify the appropriateness of the pairing of the neural network structure 
with the knowledge to be encoded. How well the identified knowledge 
characteristics, its strengths and limitations, complement those of the 
neural network architecture must be addressed. The appropriateness can 
be ascertained to a great extent prior to and independent of the actual 
encoding (training) of the given neural network architecture with the 
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targeted knowledge that constitutes the functional verification of the total 
system. 

2.1.1 Independent Verification of the Neural Network System 
Structure 

Verification of the neural network structure independent of the particular 
knowledge to be encoded can be decomposed further, based on encoded 
knowledge-base considerations: 

1. Some aspects to be evaluated, such as the correctness of the software 
code and hardware that implements the neural network architecture, are 
independent of the knowledge being encoded. 

2. Some aspects can be considered independent of the actual knowledge 
that is encoded, but do depend on characteristics of the knowledge. 

General verification tools and techniques can be utilized for those aspects 
of the neural network structure verification that are independent of the 
knowledge that will be encoded within the neural network system. A 
plethora of formal static analysis tools may be employed to verify the 
correctness of the program that implements the neural network system, e.g., 
from logic, data-flow, and resource management perspectives, such as 
memory, bandwidth, and timing constraints. Such tools are able to verify 
the data structures that implement the neural network layers, nodes, and 
links, as well as the functional expressions that implement the transfer 
functions. However, such tools are not able to determine algorithmetically 
whether the knowledge encoded due to a given training epoch will produce 
the desired outputs. 

Neural networks, at least in theory, represent a parallel computing model, 
and various efforts have been proposed to capitalize on this parallel nature of 
neural networks. Methods can include the use of both generic non-neural 
network-specific and neural network-specific parallel-based hardware 
[Saratchandran 1998], as well as custom parallel hardware, including 
programmable hardware approaches. 

One example is the potential to use readily available commodity priced 
graphics chips as vector processors to implement some of the vector oriented 
neural network architectures, such as support vector machines (SVM) and 
SOMs. Such hardware processors are optimized for vector processing and 
for data streaming [Dally 2003], both characteristics of SVMs and SOMs. 
Another example of such promising technology is the use of field-
programmable gate arrays that enable the use of adaptive hardware as 
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opposed to adaptive software to implement neural network systems [Nichols 
2003]. 

Such newly emerging approaches to the development and 
implementation of neural network-based systems will require the application 
of new V&V methods, at least new to the field of neural networks to support 
those approaches. Fortunately, the field of hardware design already has in 
place well-developed V&V processes. These range from the use of 
sophisticated modeling and simulation design tools to the incorporation of 
built-in test [Richards 1989] and built-in self-test [Mohamed 2000] 
technologies for real-time error detection and recovery. 

From a practical viewpoint, most neural network systems are 
implemented on von Neumann hardware designed around a serialized 
computational model [Backus 1978]. The processor found in most PCs and 
Macs are von Neumann hardware. Serialization of the neural network 
parallel computing model is based on multiple considerations that involve 
resource and performance trade-offs. One implementation may be more 
memory intensive while another may be more processor intensive. Various 
data structures may be employed in an effort to accelerate some functions. 

Appraisal of these trade-offs and optimizations is part of the verification 
process. Some implementation choices may be explicitly mandated in the 
system requirements, while others are discretionary, allowing the design 
engineer to chose how to do things. General verification concerns include 
how appropriate they are to accomplish the intended purpose, and whether 
they are correctly implemented. 

Numerical computations such as the calculation of values propagated 
through the network are constrained by the representational capabilities of 
the underlying hardware, as well as by software program effects such as the 
ordering and scaling of the computations. Standard numerical techniques 
such as data scaling and computation reordering can improve the accuracy 
and stability of the computed results. 

The analysis of such numerical processing is the realm of numerical 
analysis. Methods of numerical analysis such as approximation theory may 
be applied to evaluate the accuracy and precision, as well as the operational 
efficiency like operations count or memory required. Evaluations can be 
taken from multiple perspectives including best case, worst case, and 
average. Which perspective is deemed more relevant depends on various 
factors. Real-time and safety critical systems may emphasize a worst-case 
scenario; whereas, a non-real time but heavily employed system may 
emphasize an average case scenario. 

Other aspects of computational appropriateness to be considered include 
computational resource requirements such as processor speed, memory, 
computational operation counts and I/O bandwidth. Scalability and order of 
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magnitude considerations also should be considered. Later, during the 
system's functional verification (see Section 2.2), the estimates of required 
resources can be confirmed for the actual implementation of the system. 

Such aspects of software and systems verification are not specific to 
neural network systems and will therefore not be refined further in this 
assessment of neural network verification. Instead, the remainder of this 
discussion will focus on neural network-specific considerations. 

Numerical analysis methods such as an algorithm analysis may be 
applied to evaluate the efficiency of the system implementation for a 
specifically targeted execution environment. For example, such an analysis 
can be particularly important in the case of embedded systems with limited 
resources, and in the case of real-time systems where the time required for 
neural network, processing can be critical. 

This analysis ranges from considerations regarding the most appropriate 
neural network architecture, to the choice of transfer function, to the data 
structures, and to the characteristics of the hardware used to implement the 
system. What otherwise might be deemed a reasonable design for general-
purpose systems and applications may prove sub-optimal or even impossible 
to achieve with the targeted execution environment. 

Another consideration occurs when the development and target platforms 
are different and each requires special treatment. Toolsets such as 
MathWork's Neural Network Toolbox [MathWorks 2004] may provide a 
reasonable choice of platform for iterative prototyping and experimentation 
as a neural network architecture is crafted, transfer functions selected or 
defined, and preliminary knowledge is captured in the network through trial-
and-error training. 

However, the final deployed system may require porting to a targeted 
embedded platform with quite different capabilides, or specific limitadons. 
The inherent accuracy and precision of the targeted platform may be quite 
different from that of the development platform. Complex mathematical 
functions may require software versions, in lieu of hardware acceleration. 
The conversion or porting process by autocode or cross compilation is 
subject to verification. 

In addition to the theoretical, mathematical, and formal aspects of 
numerical analysis or algorithm analysis of a neural network implementation 
is the need to consider empirical results. Ultimately, the neural network 
system will be trained with empirically collected data. That empirical 
process itself needs to be verified, both in terms of the methodology by 
which it is accomplished and in terms of what quality of results can be 
expected. This can constitute a significant simulation effort in which 
artificial training epochs are employed that have been specifically designed 
to empirically test various characteristics of the neural network system. This 
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stage in the verification process may make significant use of specialized test 
generation tools (see Chapter 9). 

This empirical verification is driven from two perspectives: 

1. Empirical verification of the neural network system's designed and 
predicted capabilities and performance, independent of what knowledge 
may eventually be encoded through neural network training with actual 
real-world data. 

2. Empirical verification of the neural network's appropriateness to be 
encoded with knowledge having the expected characteristics of the 
training epochs. 

This first perspective of empirical verification leads to an understanding 
of the capabilities of the neural network structure and implementation that is 
independent of a particular problem to be solved. The results of this stage of 
verification are of strategic value, since they may be reapplied in the 
appropriateness assessment of this system for any given problem, not just the 
particular one in hand. 

Training epochs may be specifically designed to test the representational 
properties of the implementation like convergence, stability, or 
generalization. Each such training epoch constitutes a class of problems 
with specific characteristics. These epochs are distinct from those to be 
drawn later from live datasets for capturing the actual knowledge that 
ultimately is to reside in the deployed system. This type of training epoch is 
specifically designed to constrain and focus upon exactly what aspects or 
features of the neural network system architecture are being evaluated. 

Special performance evaluation epochs, for example, may be employed 
to verify the neural network architecture's stability qualities. An example of 
a quality that could be considered is to construct a given test epoch 
purposely ill-conditioned from a numerical analysis perspective. This could 
allow determination of how much flexibility or brittleness the neural 
network system exhibits with respect to the data on which the neural 
network system will be trained and deployed. 

The employment of carefully constructed training epochs thus 
empirically evaluates the performance of candidate neural network 
architectures, transfer functions, and other neural network parameters that 
may be compared against various criteria. Performance capabilities 
previously predicted are thus investigated systematically in a controlled 
laboratory setting. The results of this stage of the verification process are 
reusable since they do not presuppose a particular problem domain. 

The second perspective takes the empirical verification process another 
step closer to the specific application problem, the one that the neural 
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network system ultimately is expected to address. With the general 
capabilities of the neural network system established, this second step 
commences the meshing of the neural network system with the particular 
knowledge it is to encode and the problem it is intended to solve. 

Again, the neural network system is trained using specifically designed 
training epochs, rather than actual real life training data. This time, 
however, the epochs are designed not to explore capabilities and limitations 
of the neural network architecture, but to explore those characteristics that 
are particular to the actual knowledge to be encoded and the ultimate 
problem to be solved [Cukic 2002]. 

This second phase of the empirical verification process could be viewed 
as a series of targeted trial runs. Before this phase can be accomplished, an 
analysis of the knowledge to be encoded that is independent of any particular 
neural network system is required. The discussion of this independent 
analysis process and the characterization of the knowledge to be encoded 
within the neural network system is presented in Section 2.1.2. The results 
of that analysis effort are employed in the generation of the previously 
described testing epochs, and in the analysis of their results. 

With completion of this second phase, the neural network system 
verification independent of the actual knowledge with which it is to be 
trained is considered completed. What then remains is the functional 
evaluation and verification of the system using the actual training epochs 
that complete the actual neural network system's development. 

2.1.2 Independent Verification of the Neural Network System 
Knowledge Source 

Hand in hand with an independent analysis and verification of the total 
neural network structure, including the specification of all its parameters, is 
the need for a corresponding independent analysis and verification of the 
knowledge that is to be encoded within the neural network. Two major areas 
of analysis are identified: 

1. Knowledge analysis, which considers the inherent nature of the 
knowledge to be employed in the system. 

2. Application analysis, which considers how that knowledge is to be 
applied within the given system. 

Knowledge analysis covers both the knowledge that is used to train the 
neural network system as well as that which describes the problem to which 
the neural network system is directed. In contrast, application analysis 
positions the knowledge particular to the neural network system with respect 
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to the total knowledge and processing required by the total system of which 
the neural network system may be one component. 

Simply stated, the first point addresses the question: "What knowledge is 
available?" The second point addresses the question: "How will this 
knowledge be employed in the particular problem domain?" 

Analysis of the knowledge to be encoded in a neural network system 
includes considering the following: 

1. Completeness of the available knowledge 
2. Significance of missing knowledge or gaps, e.g., cases not adequately 

covered 
3. Representative coverage of the total problem space by the available 

knowledge 
4. Organization or partitioning of the knowledge, whether natural (obvious) 

or identified via data mining methods 
5. Knowledge characteristics, e.g., static, dynamic, evolving, adaptive, and 

conditional 

This information is critical to the application analysis which considers 
what types of inferences are expected based upon or at least supported by 
this knowledge. 

With symbolic or logic-based systems (e.g., expert systems) the 
knowledge typically is expressible as symbolic rules, logic clauses, etc. In 
the case of traditional procedural or process-oriented systems, the knowledge 
is usually in the form of scientifically, formally derived algorithms, 
equations, and procedures that typically are expressible in some high-level 
procedural or object-oriented modeling language. In both cases, the 
knowledge readily is reviewed and critiqued by human experts. 

Methods such as rule extraction, discussed in Chapter 8, represent efforts 
to deconstruct the knowledge that is encapsulated in a trained neural 
network. Those same methods can be applied in the analysis of proposed 
training data, independent of any particular neural network implementation 
[Darbari 2000, van der Zwaag 2002]. 

In the case of neural network systems, by contrast, the knowledge is not 
so clearly or explicitly described, nor so easily compartmentalized, as is the 
case with an identifiable rule or equation to represent some specific theory, 
knowledge, or fact. Rather, the knowledge is implicitly expressed within 
what otherwise could be considered a body of raw data, which either 
previously has been or is yet to be collected from the problem domain. This 
body of implicit and empirical knowledge could be considered the ultimate 
use-case, as it is a collection of selected examples drawn from the problem 
domain for which the neural network system is developed. 
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Before such a body of implicit knowledge is encoded in a neural 
network, the system evaluator needs to formulate a sufficient understanding 
of what that knowledge consists. Considerations to be addressed include: 

1. What is known or can be determined, directly or by inference, about that 
knowledge embedded in the data, 

2. How the manner, process, and circumstance by which the data is 
collected affects its potential use, 

3. Whether this information can be expressed and collected by multiple, 
perhaps independent, means, and 

4. Reasons for preferring one expression or approach over the others. 

Independent verification of the epoch knowledge that is contained within 
the neural network should be traceable back to the epochs that constitute the 
neural network's training. Such verification involves a closer examination 
by means other than the neural network encoding of the data that constitutes 
that epoch, independent of the neural network structure. 

The report by Dr. Lisboa [2001] discussing verification requirements for 
safety critical systems emphasized the importance of independent 
assessment by agents external to the original design process. This 
independent assessment should cover all aspects of the neural network 
solution, both its structure and the knowledge that it encodes. 

Various analysis methods and tools are available to support such an 
analysis. The data can be tested for how well it fits hypothesized principles, 
particularly those under which the neural network system is designed. For 
example, such analysis can determine what type of decision curves or 
surfaces best fit, bind, and partition the empirical data into meaningful 
subclasses. On the other hand, the data may be described in terms of its 
statistical and clustering properties. Analysis of how the data varies with 
time can be very important. 

The tools of numerical analysis [Pai 2000], multivariate statistical 
analysis [Anderson 2003], and data mining [Hand 2001] can be employed to 
perform such an analysis of the data constituting the knowledge source to 
confirm system design hypotheses as well as to identify unanticipated issues, 
like conflicts with those hypotheses. In particular, some data mining 
methods incorporate neural network techniques as part of their data analysis. 

Machine learning [Mitchell 1997] may appear at first to constitute an 
attempt at circuitous reasoning, using one neural network to analyze data to 
be used in another neural network. The major difference between the two 
applications of neural network technology lies in how they are used. In this 
case the emphasis is on characterizing and understanding the available 
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knowledge, whereas in the original case (the one being verified) the 
emphasis is on applying the knowledge to solve a particular problem. 

This machine learning exercise could be considered an automated or 
computer-assisted brainstorming session to explore and to determine just 
what information or knowledge is contained in the proposed data that will be 
used to train the neural network system that is to be deployed. The results of 
this effort at knowledge analysis are apropos not only to the particular 
application of this knowledge that is the current focus, i.e., the current 
problem to be solved, but more generally whether the knowledge might be 
appropriate to any other problem that may even tangentially involve this 
knowledge. 

In addition to providing a detailed characterization of the knowledge 
implicit in the training data, this analysis also facilitates a better 
determination of engineering concerns, such as how much data is needed to 
properly capture within the neural network system the knowledge or 
mechanisms that supposedly are exhibited in the data to the levels or degrees 
of accuracy, precision, coverage, or generalization specified in the system 
design requirements. 

The results of this knowledge analysis can also benefit the actual 
operation of the neural network system by providing a foundation for 
evaluation of the operational epochs that are passed through the deployed 
neural network system. This knowledge can be employed proactively in the 
development of real-time monitors that evaluate when the inputs to the 
operational neural network system should be questioned. 

Complementary to knowledge analysis is the consideration of the 
suitability of the knowledge implicitly expressed in the proposed training 
epochs in accomplishing the purpose of the total system. The task of 
application analysis utilizes the insight gleaned by the knowledge analysis 
task regarding the nature of the knowledge source (KS) to explicitly and 
purposefully relate that KS to the problem that it is supposed to address. 

The goal of application analysis is to ascertain how well the proposed KS 
addresses the problem being solved. Identified deficiencies may indicate the 
need to expand or otherwise modify the knowledge collection, to incorporate 
other external knowledge, or to modify neural network system architecture 
and parameters. 

Major issues and concerns to be addressed by the application analysis 
task include, for example, the following considerations: 

1. Extent to which the KS covers all possibilities (scenarios), 
2. Uniqueness and relevance of the KS to the particular problem, 
3. Alternative or additional KS that are more relevant, 
4. Generalization, levels and what types, required of the KS, 
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5. Ambiguity of multiple, equally plausible and acceptable generalizations, 
6. Accuracy and precision expected from the KS, 
7. Safety-critical requirements on the KS, 
8. Mission-critical requirements on the KS, 
9. Fault management requirements on the KS, 
10. Confidence levels to which results are judged, and 
11. External mechanisms or KSs available by which to judge and confirm 

generalizations. 

The functional verification activities discussed in Section 2.2 will 
consider whether the final implemented neural network system does indeed 
generalize as expected. However, before that determination is addressed, the 
more immediate concern is to what extent the underlying knowledge itself, 
independent of any particular neural network architecture, can be expected 
to satisfy the application requirements. Otherwise, the determination of 
what knowledge to use or whether the problem should be solved with a 
neural network system remains in question. 

In addition to the identification of the major issues to be addressed, 
another major aspect of this task is to identify the criteria by which to judge 
the findings of the analysis. 

The use of neural network-based systems in medical diagnosis provides 
an example of such systems design and V&V considerations [Lisboa 2002]. 
Neural network-based medical diagnostic systems are safety-critical, and so 
their predictions must be externally confirmable by a medical exam or other 
independent medical procedures. The determination of which instances of 
the system's usage should be second opinioned can depend on many factors. 
A medical system must attain a series of certification levels on its way to full 
certification, moving from limited trial to broad based trial, and finally to 
full deployment. 

The source of the knowledge should be carefully considered. The 
eventual target environment of the neural network system can be quite 
complex. Proper training of the neural network system can be greatly 
affected by the quality of the data that constitutes its training epochs. The 
collection of production data will certainly be required for the training as 
well as for the final functionality verification and acceptance testing of the 
neural network system. Production data will likely characterize the type of 
data typically available to the deployed neural network system. However, 
the neural network development and verification in some cases may 
necessitate the use of additional designed data. 

Designed data [Coit 1998] is not simulated or fabricated data. Rather, 
designed data is indeed actual observable, collectible data. However, it is 
collected under carefully controlled and specified conditions. When a data 
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collection experiment is designed and performed, the data collected is much 
more tightly controlled. Exact levels of the input variables are stated. 
Experiments can be blocked to avoid confusion caused by questionable 
examples. Experiments may be replicated. The designer can control the 
sampling distribution. 

Such planned experimental data often is collected with more care and 
attention than that normally given to production data. The setting is more 
controlled, so that the observations that are collected can be properly 
attributed to the correct circumstances and causes. For example, only a 
single operator, machine or ambient condition may participate. Additional 
special tests or measurements may be made that would be impractical during 
normal production. 

Data analyzed during the course of the experiments may lead to the 
modification of the experimental design or the data collection procedures, as 
needed. Multiple iterations may be required to satisfy the data collector as to 
the usefiilness and completeness of the data that is collected. 

More information may be collected as part of the designed data collection 
than will be available for use by the neural network system when employed 
in normal production mode. Such additional sources of information are not 
to be used to train the neural network system, since they would not normally 
be available as inputs to the neural network system. However, such 
information may be available under special circumstances as in when the 
system is operated in a diagnostic mode observed by an external monitoring 
system. Thus, what otherwise might be considered extraneous data may yet 
have a valid purpose in one or more of the diagnostic operational modes of 
the system. It also may be useful in the determination or verification of 
overall system performance. 

Other reasons for the collection of designed data include the need to 
capture atypical situations like failure modes that do not occur with 
sufficient frequency when the system environment is employed in typical 
production mode. If the neural network system is expected to detect the 
presence of faulty products in some production process or some anomalous 
situation, a sufficient number of such events may not occur frequently 
enough under normal operations to provide an adequate training set. 

Dr. Alice Smith discusses the issues related to the need for and the use of 
both designed data and production data in the development of appropriate 
complete training and testing epochs [Coit 1995]. Such issues include the 
proper balancing of examples from both sources. Normal production data is 
more readily available than specifically collected designed data. 

The need for a readily available external source of confirmation can be a 
vital concern in real-time safety-critical systems such as neural network-
based aircraft flight controllers. For example, medical standards related to 
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the deployment of new systems require the ready availability of independent 
means to confirm the results of the new system. Such external sources must 
be independent and not simply the result of partitioning available training 
epochs to support a cross-validation strategy. 

For the case of systems that require such ready access, one alternative 
may be for novelty detection to be permanently built into the total system. 
In a sense, the novelty detector may be viewed as part of a real-time self-
imposed V&V of the neural network system's performance (see Section 2.2). 

The willingness of various industries to adopt and to trust neural 
network-based systems is following a predictable story-line similar to that of 
the development and deployment of fly-by-wire technology. 

Fly-by-wire is a means of aircraft control that uses electronic circuits to 
send inputs from the pilot to the motors that move the various flight 
controls on the aircraft. There are no direct hydraulic or mechanical 
linkages between the pilot and the flight controls. Digital fly-by-wire 
uses an electronic flight control system coupled with a digital computer 
to replace conventional mechanical flight controls.^ 

For a number of years, new fly-by-wire control systems were deployed 
with then traditional hydraulic systems as backup. Over time, the fly-by-
wire system technology was in fact proven by accumulated experience to be 
more adaptive as well as more reliable (less prone to failure and less 
expensive to maintain) than the hydraulics that was replaced. Historically, 
the National Aeronautics and Space Administration (NASA) used an F-8C 
for its Digital Fly-by-Wire Program. This was the first digital fly-by-wire 
aircraft to operate without a mechanical backup system. 

2.1.3 Appropriateness Verification of Neural Network Structure and 
Knowledge 

Sections 2.1.1 and 2.1.2 discussed the roles of independent examinations 
of the neural network structure and of the knowledge that has been or will be 
encoded. The information gleaned during these independent examinations 
serves a crucial role in the evaluation of how well the two system 
components can be expected to mesh to form a total neural network-based 
system. 

This section considers issues that should be addressed before the actual 
neural network training is performed and functionally evaluated. Emphasis 
is on how well the strengths and limitations of the chosen neural network 

^ Fly-by-wire, http://www.1903to20Q3.gov/essav/Dictionarv/flv-bv-wire/DI83.htm 
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architecture complement the knowledge available for training the neural 
network and external constraints on the problem to be solved. 

The appropriateness of matching the chosen neural network structure 
with the available knowledge should be considered at several levels. These 
aspects range from the high-level validation question of whether the choice 
of neural network architecture is appropriate to the problem being addressed, 
to how the neural network parameters should be set to best encode the 
training dataset, to planning how to verify the encoding of the domain KS 
that represents the problem domain knowledge. 

Whether selected from a standard configuration, as from a development 
package such as MATLAB Neural Network Toolbox, or custom designed, 
the particular neural network architecture and its configuration parameters 
are determined based on a set of assumptions about the knowledge to be 
encoded and the data available for training and evaluating the final system. 

To focus discussion of the appropriateness of the neural network 
structure, of the knowledge it is to encode, and of the problem to be solved 
or application to be performed, this section considers the two general 
statistical estimators of performance, bias and variance. In particular, this 
section analyzes the interplay of these two as typified in what has been 
termed the bias-variance dilemma, Geman, Bienenstock, and Doursat 
[1992] in "Neural Networks and the BiasA/^ariance Dilemma" provide a 
comprehensive discussion of this neural network design problem. The two 
statistical factors, in neural network terminology, may be defined thus: 

1. Statistical bias is the complexity restriction that the neural network 
architecture imposes on the degree to which the target function is 
accurately fit. 

2. Statistical variance is the deviation of the neural network learning 
efficacy from one data sample to another sample that could be described 
by the same target function model. 

Statistical bias accounts only for the degree of fitting of the given 
training data, but not for the level of generalization. On the other hand, 
statistical variance accounts for the generalization of whether or not the 
neural network fits the examples without regard to the specificities of the 
provided data. While the two statistical measurements are interrelated, 
improvement of one of these measurements does not necessarily guarantee 
improvement in the other. 

The performance of the trained network can depend on many factors, 
including the learning algorithm, number of layers, number of neurons, 
connections, overall network topology, and the transfer functions computed 
by each neuron. To avoid over- and under-fitting of the data, the bias-



Neural Network Verification 129 

variance trade-off should be balanced by matching the complexity of the 
network to the complexity of the data [Twomey 1998]. 

Fig. 6-2 depicts an idealization of the prediction risk, represented as the 
expected training error and expected test error, versus model size for models 
trained on a fixed finite training sample [Moody 1994]. The figure separates 
into two regions: under-fitting which is due to high model bias and over-
fitting which is due to high model variance. The selection of the best model 
corresponds to an optimal tradeoff between the global low training error and 
the global low test error. 
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Figure 6-2. Idealized Depiction of Expected Training Test Error (Prediction Risk) vs. Model 
Size 

The under-fitting situation of Fig. 6-2 occurs due to a lack of adequate 
training. On the other hand, too much training of a neural network system 
can result in over-fitting. This corresponds to the situation where the learned 
function fits very closely the training data however it does not generalize 
very well. Consequently, the neural network cannot model sufficiently well 
unseen data from the same task. General criteria for avoidance of over-
fitting the training data and increasing the generalization are given by the 
statistical and generalization theories. 
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A neural network that fits closely to the provided training examples 
should have a low bias but could have a high variance. Incorrect neural 
network models can result in too high a bias. This is the situation where the 
neural network tightly matches the training set, but the training set does not 
in fact represent the true problem. On the other hand, truly model-fi*ee 
inference where the model is selected without any understanding of the 
training set suffers from high variance. Model-free approaches to complex 
inference tasks are slow to converge, in the sense that training epochs 
required to achieve acceptable performance can be quite large—to the point 
of being impracticable to collect. This is the effect of high variance and is a 
consequence of the large number of parameters; indeed, an infinite number 
in truly model-free inference that need to be estimated. 

Simply stated, increasing the number of parameters of a neural network 
model can contribute to a large variance, while small numbers of parameters 
increase their bias. In the former case, more cases might be generalized, 
though less well, while in the latter case the network is more tailored to a 
given problem domain and should be expected to perform that task more 
efficiently but does not generalize well outside that carefully crafted domain. 

Various strategies are available to the developer of a neural network 
system for fine-tuning to achieve the desired generalization level [Nikolaev 
2003]. Some simple strategies that manipulate the neural network 
architecture include the following: 

• Reduce both the statistical bias and variance by considering more data 
points. 

• Reduce the statistical bias by growing of the neural network. 
• Reduce the statistical variance by pruning the neural network. 

Addidonal efforts to balance the stadstical bias and variance involve 
tuning the network learning algorithm, providing training examples, or 
shaping the transfer function. Other efforts to balance the statistical bias and 
variance in an effort to avoid over-fitting can be made with the following 
neural network tuning strategies: 

• Regularization 
• Early stopping 
• Growing neural networks 
• Pruning neural networks 
• Committees of neural networks 
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The neural network verification process should include an analysis of the 
following bias-variance aspects of the neural network system design and 
implementation: 

• Bias-variance target that is mappable to the available data and the 
problem being solved. 

• Approaches taken to achieve that target with combination of the above or 
other methods employed. 

• Justification given bias-variance target and the choice of approaches 
used, including technical issues, cost and management issues, safety- or 
mission-critical concerns. 

An obvious concern of the V&V practitioner is the determination of how 
well the neural network system addresses the bias-variance dilemma. Prior 
to the actual neural network training, the V&V analysis should leverage the 
resources previously discussed in Sections 2.1.1 and 2.1.2 to access how 
well the proposed combination of neural network system and training epochs 
will evaluate with respect to the general performance estimators of bias and 
variance. 

During and following the training of the neural network, these general 
estimators again should be computed and compared with expected results as 
a component of the functional verification discussed in Section 2.2. 
Discretion to modify the training epochs or the neural network system via its 
available parameters in an effort to achieve better performance results 
certainly are options for the system developer and may be an option to the 
V&V practitioner, whether directly or via referral to the developer. 

Neural networks have been proven capable of functioning as universal 
approximators. They can approximate an arbitrary continuous function on a 
compact domain with arbitrary precision given a sufficient number of 
neurons when they include nonlinear activation functions [White 1990]. The 
trained weights of a neural network are a vector-valued statistic, and training 
is the process of computing that statistic. The relationship between neural 
network models and statistical models has been the subject of several recent 
papers by well-known statisticians [Cherkassky 1994] with the general 
conclusion that there are many important parallels between the development 
of neural network models and the computation of statistical models. 

Networks with neurons that produce Gaussian outputs also are examples 
of universal approximators. Two popular feed-forward neural networks 
models, the MLP and the RBF network, are based on specific architectures 
and transfer functions. MLPs use sigmoidal transfer functions, while RBFs 
use radial functions, usually Gaussians. Given such choices of transfer 
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functions, both types of neural networks have been employed as universal 
approximators. 

The employment of universal approximators as transfer functions does 
not always provide an optimal choice. Approximations of complex decision 
borders or approximations of multidimensional mappings by neural 
networks require flexibility that may be provided only by networks with a 
sufficiently large number of parameters. This leads to another method by 
which to address the previously discussed bias-variance dilemma. 

More recently, a number of new transfer function types, as well as 
hybrids of previous types, are being applied in a variety of applications. The 
comprehensive 50-page paper, "Survey of Neural Transfer Functions" 
written by Duch and Jankowski [1999] provides an examination of general 
criteria by which to judge the appropriateness of these and other transfer 
function types for various classes of neural network applications. Their 
survey reinforces the argument by several neural network experts that the 
choice of transfer functions should be considered as important as the 
network architecture and the learning algorithm when developing a neural 
network solution. 

Fig. 6-3 that follows is taken from another Duch and Jankowski [2001] 
paper. The transfer function types are hierarchically ordered according to 
their flexibility. Each similarly grayed row contains functions that exhibit 
similar flexibility. The top rows contain the most flexible function classes, 
and the bottom rows are the simplest. Along with the names of function 
types are numbers in parentheses to identify the equations in the Duch paper 
that describe each type, and mathematical symbols indicate the activation 
and output functions employed to form each transfer function type. 

For simple problems, the selection of transfer function may not appear to 
be a significant system constraint. However, in the case of more 
sophisticated applications, the selection of transfer functions may make a 
significant difference in eventual performance or ease of training. 

At one extreme, when the datasets are small and the dimensionality of the 
feature space is relatively large, the actual shape of decision borders 
determined by the choice of transfer function may seem irrelevant. Logical 
rules or decision trees, dividing the feature space into hyper-boxes, may be 
sufficient. 

However, as more data samples are provided, the inadequacy of the 
generic transfer function models will appear and the need for flexible 
contours approximating real distribution of data may become apparent 
[Jankowski 2001]. As noted in Section 2.1.3, complexity of the neural 
network model may be controlled by Bayesian regularization methods using 
ontogenic networks that grow and/or shrink, and judicious choice of the 
transfer functions. 
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Figure 6-3. Hierarchy of Neural Network Transfer Function Classes [Duch and Jankowski 
2001] 

Much of the prior discussion has focused on correctness and 
performance, but there are other considerations such as efficiency. 
Efficiency involves not only the resources required by the neural network 
system when it is functioning in its intended application, but also the steps 
that lead to that neural network system's development as well as its V&V. 

The optimal system may consume too many resources, computationally, 
to be deployed in the targeted environment. The choice of transfer function 
may not only improve the correct performance of the system, but also result 
in a system that is less complex and requires less training effort to achieve 
the desired performance level. 

A variety of strategies have been explored for the incremental refinement 
of neural network systems so they are both more correct and more efficient 
[Ragg 1997a]. Some approaches attempt to modify the neural network 
topology [Ragg 1997b]. Other approaches include the employment of 
hybrid algorithms integrating genetic algorithm, simulated annealing, and 
other heuristic procedures that can be applied for the optimal design of a 
neural network architecture and correct parameters for the learning 
algorithm that yield a smaller, faster and better generalization performance 
[Abraham 2000]. More recently, researchers are considering transfer 
function adaptation as a means to improve neural network system 
performance and training efficiency [Chandra 2004; Abraham 2001]. 

Such efforts to iteratively, incrementally, and genetically evolve a neural 
network system to achieve better performance and efficiency require 
comparing the actual performance of successive versions of a neural network 
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system. This means that each version is functionally evaluated as to whether 
it not only still performs as expected, but also has improved in some 
demonstrable sense. Section 2.2 discusses this topic in more detail. 

2.1 Functionality Verification 

Functionality verification is essentially a black-box testing activity to 
determine if, given appropriate input events, the correct output events occur. 
Inputs and outputs may encompass not only data feeds into and out of the 
system, but also system actions that result or do not result such as a robot's 
correct and incorrect actions. The verification of the neural network 
system's functionality involves determination of whether the system can be 
employed as was intended and for the problem that it was designed. 
Basically, the system should "perform as advertised." Its interactions with 
its environment should be as specified. 

The functional verification of a neural network system may be 
particularly challenging. The same methods that are applied to the 
functional verification of a completed neural network system are also 
employed during the neural network learning/training process. 

As Dr. Lisboa [2003] has previously noted regarding the V&V of safety-
critical systems, the V&V process requires adherence to formal 
methodologies at each level of the design lifecycle. However, where non­
linear inferences from real world data are involved, the emphasis appears to 
be shifting towards the employment of extensive trials with external data. 
This leads to a verification process that is performance-based. 

Training is an iterative process; the knowledge encoded in the neural 
network system is changed with each additional training cycle of a training 
epoch. 

Functionality verification is concerned not only with what the system is 
able to do but with also how well it performs those functions. Additional 
considerations include the stability and consistency of its performance over 
an expected diversity of operational settings. The predictability and 
repeatability of the observed performance is considered. Such 
considerations are important when judging adaptive systems. 

Previous sections have discussed verification of the components that 
comprise the neural network system, namely, the total neural network 
structure, consisting of neural network architecture and system parameter 
choices, and the training epochs employed, where the knowledge to be 
captured implicitly resides. Various approaches and techniques for the 
independent evaluation of each of these components have been discussed. 
The results of those independent verifications now are brought to bear on the 
functional verification of the total neural network system. 
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2.2.1 Simulated vs. Empirical Verification 

In particular, Section 2.1.3 considered via an analysis of the ability of the 
neural network structure to encode especially crafted artificial knowledge 
via training epochs that supposedly exhibits the characteristics of the actual 
knowledge with which the neural network system is ultimately to be trained. 
This set of dry-runs permitted the carefully controlled analysis of how well 
the neural network system might be expected to behave under a variety of 
assumptions. Objectives and considerations served by such a preliminary 
training exercise include the following: 

• The amount and quality of data available with which to test the neural 
network system's characteristics, performance, etc. is not limited by 
potential difficulties and costs in collecting real data. 

• This flexibility in training epochs facilities a comprehensive analysis of 
the neural network system's ability to encode the desired knowledge. 

• The training process itself can be thoroughly verified. 

Some data sets, such as those that would be collected during a test flight 
of an aircraft, could be quite expensive. To perform repeat data capture 
sessions for multiple scenarios can quickly become cost prohibitive. 
Additional considerations that can arise and so must be addressed include 
recalibration between test collection runs and proper documentation of all 
pertinent constraints. 

The simulated data sets may include not only training epochs designed to 
represent expected or typical scenarios, but also to mimic abnormal training 
epochs. Such epochs may be difficult, quite unsafe, and perhaps impossible 
to collect under normal conditions. These conditions could occur under 
plausibly realizable circumstances and should therefore be considered in the 
final analysis. The nature and quantity of designed data discussed in Section 
2.1.2 can be identified, estimated, and confirmed. 

A comprehensive analysis of the neural network system should include a 
sensitivity analysis to determine whether and under what circumstances the 
combination of this neural network system and the expected actual training 
data might result in an ill-conditioned system, and so require further 
engineering consideration and refinement. 

Simulated data, generated from actually collected data, can be 
systematically deformed. Deformation would render the simulated data 
defective in some sense. This data can be employed to test the stability of 
the neural network system from two perspectives: 

1. Training with less than optimal (desirable) epoch data 
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2. Executing with less than optimal (expected) run-time data input. 

The first case is part of the stability analysis of the neural network 
system's training. The latter case constitutes part of the assessment of the 
system's expected run-time performance for scenarios where circumstances 
outside the system's control affect data on which the neural network system 
depends. 

Additional considerations to be addressed include verification of the 
neural network training and verification of the process itself, including how 
to assure quality control of the actual training epochs, estimation of how 
much data should be collected, or what error metrics are more appropriate to 
use. 

The training methods that are to be employed with the actual training 
epochs are presumed to have been employed previously with such artificial 
epochs. The process of capturing and training with actual training epochs 
should greatly benefit from such prior effort. 

Of the two concerns of what vs. how that functional verification 
addresses, the easier one is that of how well the system performs. The more 
difficult analysis concerns appraisal of the correctness of the system. Given 
a neural network system and a set of training epochs, the training can be 
performed using a variety of approaches that are adaptable and flexible. 

The following section examines the process for verification of the 
training of the system. The focus is on the generation of quantifiable 
appraisal of the neural network system's performance. The training process 
and its evaluation are interrelated. A given training process may perform 
poorly or well. 

This process is not the counterpart of compiling the source code of a 
procedural program to generate executable object code, which either does or 
does not compile. A traditional program may have and eliminate compiler 
errors, only to reveal run-time errors. 

2.2.2 Quantifiable Training Verification 

The verification of the training needs to be measurable. Neural network 
systems may be viewed as implementing a function approximation task. 
Generally accepted standard error measurements include: 

• mean absolute error (MAE), 
• mean squared error (MSE), 
• root mean square error (RMS), and 
• percent good classification (PG). [Twomey 1997] 
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There is no consensus as to which measure is preferred. 
A neural network system performing pattern classification typically will 

use an error metric that measures misclassifications along with, or instead of, 
an error metric that measures distance from the correct classification. 

Misclassification error is further broken down into two components: 

1. Type I errors, also called a . errors or missed occurrences, are 
misclassifications where the input pattern, which belongs to one class, is 
identified as something other than that class. 

2. Type II errors, also called p. errors or false alarms, are misclassifications 
where the input pattern belongs to another pattern class, but is identified 
by the neural network as belonging that particular class. 

The objective of a neural network system is to generalize successfially, 
that is, to predict successfully on data not used to train the neural network. 
A neural network system's success generally is measured in terms of the 
following three statistical error measurements [Efron 1982]: 

1. True Error is statistically defined on "an asymptotically large number of 
new data points that converge in the limit to the actual population 
distribudon." [Weiss 1991] 

2. Apparent Error is the error of the neural network when validating on the 
same training set used to construct the model. 

3. Testing Error is the error of the neural network when validating on a test 
set other than the training set. 

Since any real application can never determine True Error, it must be 
estimated from Apparent Error and / or the Testing Error. This situation is 
expressed as 

True Error == Apparent Error + Bias (6.1) 

Most current neural network practitioners use Testing Error as the 
estimate for True Error, the so-called train-and-test validation method; 
however, some use Apparent Error, and a few use combinations of both. 
Typically the true error of a neural network system is estimated by testing 
the trained neural network on new data not used in model construction. 

In many cases data may be severely limited; consequently, the true error 
is estimated using the same data employed to construct the model. Several 
sampling methods that reuse the training set data have been developed. 
These have two important aspects: 



138 Chapter 6 

• They use all data for both model construction and model validation. 
• Nonparametric techniques do not depend on functional form or 

probabilistic assumptions. 

Some of the more prominent methods are briefly discussed below. There 
are trade-offs associated with using these methods for both neural network 
and statistical prediction models [Twomey 1993]. These methods are 
nonparametric or data driven. Benefits of nonparametric methods include 
the following: 

• They demand minimal amounts of modeling 
• They require few assumptions or analysis 
• They are mechanistic or easy to apply for universal application 
• They substitute computing power for theoretical analysis 

The greatest benefit associated with such resampling methods is that they 
utilize all available samples in neural network system training. The first two 
methods below require the training only on neural network system. These 
methods are relatively inexpensive in computational resources, and may be 
appropriate for simpler, non-mission critical applications. The latter three 
methods generate multiple neural network systems but provide better error 
estimates, so they are appropriate for systems associated with higher value 
and risk. 

Resubstitution substitutes the training data used to construct the model 
for estimating model error or training set error. This method is also called 
the apparent error method since it estimates True Error as equaling the 
Apparent Error, and Bias is treated as being zero. This estimate is thus 
biased downward to less than the true error, sometimes severely. This 
method does use all of the data both for model construction and for model 
validation and is computationally inexpensive because only one model is 
constructed. 

The test-and-train methodology divides the available data into two sets. 
One set is used to train the neural network model, and the other set is used to 
validate the model. This is the most common method of neural network 
validation. True Error is estimated directly as the testing set error and Bias 
could be calculated by subtracting the Apparent Error from the testing set 
error. 

The proportion set aside for training of the available data has ranged, in 
practice, from 25% to 90%. The training set error, and therefore the estimate 
of True Error, is highly dependent on the exact sample chosen for training 
and the exact sample chosen for testing. These two components are 
completely dependent on each other since they are mutually exclusive. This 
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creates a highly variable estimate of True Error, especially for small sample 
sizes. 

A modified version of this method divides the available data into three 
sets: 

1. Training set, 
2. Stop testing set used during training, and 
3. Performance testing set used for validating the trained network. 

The stop testing set is used during training to decide when training 
should stop. This stop-learning test set is intended to detect and prevent 
over-fitting. The second testing set then is used to estimate the True Error of 
the trained network. This method may result in a better generalizing final 
network, because of its avoidance of over-fitting, but the available data 
sample is divided three ways instead of two ways, decreasing the number of 
data points used for model construction. 

Fig. 6-4 [Twomey 1993] provides an example of over-fitting due to 
neural network over-training. In this example, the best results were achieved 
with a training epoch of 180 items. Continuing to train with additional 
training items results in degraded statistical results. 

Fig 6-4 is separated into two columns. The column on the left shows 
training with a training data set. The column on the right shows testing via 
cross-validation data. In row a), the training results in a poor fit as it is thus 
far insufficient. In row b), there is a slightly improved fit due to continued 
training. Row c) results in a near-perfect fit and would be an opportune time 
to stop training. Finally, row d) demonstrates over-fitting due to continued 
training where there is a low error in training and a higher error in testing 

In terms of computational costs, for both versions of train-and-test, only 
one model is constructed, but both training and testing are performed on a 
subset of the available data. 

Cross-validation and group cross-validation [Stone 1974] each divide the 
available data into k subgroups. A total of k distinct neural network systems 
are constructed, each using k-1 data groups for model construction, and the 
reserved group for k̂ ^ model validation. 

In general, this method removes a sub-sample of data size k from the 
entire data set size n. The network is trained on the remaining n-k data 
points and tested on the k data points left out. The sub-sample of data then 
is returned into the training set. This extract-train-test-return procedure is 
repeated until all n points have been removed and n/k networks have been 
trained and tested. In the special case of k=l, this method is known simply 
as cross-validation. 
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Training Iterations = 2 
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Figure 6-4. Training: An Example of Over-fitting 

The final deployed neural network system then is trained using all the 
data. Some practitioners simply select the final network fi-om the n/k 
networks that were constructed. Its True Error is estimated by using the 
mean of the Testing Errors of the k grouped cross validation neural network 
models. 

This method uses all available data for both model training and model 
validation, but requires the construction of k+1 models, i.e. training k+1 
neural networks. Its Bias is estimated by subtracting the Apparent Error of 
the application network from the estimate of True Error. 

The jackknife methodology [Miller 1974] is identical to the grouped 
cross-validation except that the Apparent Error is determined by averaging 
the Apparent Error, rather than the Testing Error, of each jackknifed model. 
Each jackknifed model is the same as each grouped cross-validated model. 
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described in the preceding section. The Bias is estimated by subtracting this 
new Apparent Error from the estimated True Error. 

Simply stated, the vaUdation using grouped cross vaHdation and grouped 
jackknife will be identically determined and computed, except for the 
calculation of Apparent Error. Consequently, the computational costs are 
the same as that of group cross-validation. 

With the bootstrap methodology, [Efron 1982] an initial data set of size n, 
called the bootstrap, is drawn with replacement from the original data set of 
n observations. The bias of each bootstrapped network is estimated by 
subtracting the Apparent Error of that network from the error of the network 
evaluated on the original total data set. 

This process is repeated k times, each with a different randomly drawn 
data set. The overall estimate of Bias is obtained by averaging over the k 
estimates of bias. The final application model is constructed using all of the 
data. Therefore k+1 models are constructed. True Error is estimated by 
adding the estimate of Bias to the Apparent Error of the application model. 

The bootstrap method is generally noted to be less variable than either 
the grouped cross validation or the grouped jackknife, but it can be 
downwardly biased. According to Efron, originator of the bootstrap, this 
method is the maximum likelihood estimate of the True Error. The 
bootstrap method constructs the final model using all n data points and 
estimates the bias via resampling. 

Although the bootstrap methodology has been shown to provide very 
good estimates of error for statistical prediction models, there are few 
instances in the literature where the bootstrap method of error estimation has 
been applied to neural network prediction models. This is most likely due to 
the increase in computational effort of building additional models. 

2.3 Adaptive Systems Verification 

If the neural network system is an OLNN, it is adaptive while used in 
operation. This means the verification process becomes significantly more 
complicated. The requirements for which the adaptive system was designed 
necessarily included statements regarding what the nature of the adaptation 
is to be. Example requirements could specify that the network is supervised 
or unsupervised or that it is explicitly bounded and focused or open-ended 
where the neural network is limited only by the capabilities and resources of 
the underlying computing platform. 

That the developed system indeed satisfies the described adaptation 
strategy must be verified. Each of these adaptation choices will affect the 
approaches taken to verify the system. Verification now includes not only 
the system's encoded knowledge at a given point in time, the case with a 
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pre-trained neural network (PTNN), but also the discipline by which the 
OLNN is constrained to perform within the bounds set for it. The system 
cannot be allowed to "learn its way into a hole." 

A significant difference exists between a PTNN and an OLNN in regard 
to the roll and objective of verification. With the PTNN, focus is on what 
the PTNN knows at the time of deployment; whereas, with the OLNN, the 
bounds of what the OLNN might yet learn in the future also is a major 
concern. 

In particular, with adaptive systems, the verification process does not 
reach a definitive point in time. For example, the verification might not be 
considered complete at system rollout when system verification can be 
treated as a completed static event, since the knowledge encoded within the 
neural network is subject to change in response to events in its operational 
environment. On the other hand, to address the requirement of post-
deployment verification by repeatedly reapplying the methods of static 
system verification is not practical, either. 

To adequately address this situation, a middle-ground strategy is needed. 
This section examines how such a strategy may be implemented and 
verified. The following areas are examined: 

• Sources or mechanisms for neural network adaptability 
• Functionality required to oversee and assure the neural network 

adaptability 
• Evaluation procedures and processes 

The neural network system adaptability may be achieved in multiple ways: 

• Neural network system weights, topology, etc. may be modified. 
• Learning rules and constraints may be modified. 

New training may be integrated with prior neural network training in a 
variety of ways. 
New training may be integrated with external knowledge in a variety of 
ways. 

• 

• 

Each of these modalities raises particular verification concerns to be 
addressed. In particular, these modalities of adaptation may be applied in 
multiple ways that may or may not be coordinated with one another. 

2.3.1 Adaptive Neural Network Architectures: A Primer 

The simplest form of neural network adaptation is the adjustment of 
neural network weights during the training process, whether this adaptation 
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is performed as pre-training or online learning. Examples of such neural 
network architectures that employ this approach include the widely 
employed feed-forward, back-propagation architecture developed in the 
early 1970's by several independent sources, including Parker [1987], and 
Rumelhart [1986]. Such architectures are generally employed in prediction-
class problems and require supervised learning. 

With some neural network systems, not only are the various weights 
subject to modification, but so is the neural network structure. The SOM 
developed by Teuvo Kohonen in the early 1980's [Kohonen 1998] is such a 
neural network architecture. The input data to an SOM is projected to a two-
dimensional layer that preserves order, compacts sparse data, and spreads 
out dense data. 

Another significant difference between this neural network type and 
many others is that training of the SOM involves unsupervised learning. 
Hybrid applications involving SOMs also are possible. When the SOM 
topology is combined with other neural layers for prediction or 
categorization, the network first learns, in PTNN mode, in an unsupervised 
manner. It then switches, in OLNN mode, to a supervised mode for the 
trained network to which it is attached. 

The counter-propagation network was developed by Hecht-Nielsen 
[1988] as a means to combine an unsupervised Kohonen layer with a 
teachable output layer. This is yet another neural network topology to 
synthesize complex classification problems while attempting to minimize the 
number of processing elements and training time. The operation of the 
counter-propagation network is similar to that of the learning vector 
quantization network in that the middle Kohonen layer acts as an adaptive 
look-up table, providing the closest fit to an input stimulus and outputting its 
equivalent mapping [Ellingsen 1994]. 

More recently, efforts to apply adaptive technologies such as genetic 
algorithms and simulated annealing techniques to the adaptation of a neural 
network architecture have been explored [Alander 2001]. Other researchers 
have attempted comprehensive strategies, such as the Adaptive Learning by 
Evolutionary Computation system [Abraham 2001], an automatic 
computational framework for optimizing neural networks wherein the neural 
network structure and the learning algorithms are adapted according to the 
problem. 

From a verification perspective, the means and the mechanisms of neural 
network architecture adaptation for the system in hand, whether restricted to 
weight changes, or including topological modifications, should have been 
verified as described previously in Section 2.1.1 before any pre-training or 
online-learning is implemented. Similarly, the appropriateness of the chosen 
means of modification should have been at least simulated with artificial 
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adaptation scenarios. Those aspects of neural network architecture 
verification are not repeated in this section; rather, the emphasis in Section 
2.3 is on the special problems and conditions that real-time online adaptation 
introduces, and how the verification process may address them. 

2.3.2 Adaptation Through Learning: Supervised and Unsupervised 

The verification process must take into account whether the OLNN 
training is supervised, unsupervised, or some combination of the two. In one 
sense, all neural network systems are supervised; that is, mechanisms and 
procedures at some level of system control must be provided to constrain 
and oversee when and what the neural network system is permitted to learn, 
and thus how it will adapt. Validation through determining the 
applicableness and verification through determining the correctness of those 
supervision mechanisms must be considered a core fundamental component 
of the neural network system verification process, whether such supervision 
is considered to be a component of the total neural network system or 
external to it. Some of the more prevalent learning mechanisms are 
considered here. 

In the traditional neural network sense, supervised learning refers to the 
neural network being explicitly presented with a set of examples, the 
supervised training epoch that includes not only the inputs that the neural 
network is to observe, but also the outputs that the neural network is to 
recall. This learning experience is explicitly controlled by an external source 
or mechanism. This mechanism shall be termed the supervisor, and such 
learning is termed supervised learning. The neural network initiates new 
learning when toggled into leam-mode and presented an epoch on which to 
train. Otherwise, the neural network functions in application-mode, 
producing outputs to the inputs it is presented, based on its current state of 
training. 

In the case of unsupervised learning, the neural network is not presented 
with matching sets of neural network inputs and outputs, such as may have 
been prepared by an external supervisor. Instead, the learning rule, which is 
part of the total neural network system, determines how appropriate outputs 
are generated. Unsupervised learning is generally associated with pattern 
classification-like problems in which a collection of data inputs are sorted 
into several potential classes. The neural network may be indirectly 
supervised by the external modification of learning rule parameters. 

The learning rule parameters include such considerations as the number 
of distinct classes to which an input may be classed, the similarity metric for 
evaluating the similarity of an input to one class vs. another, and the transfer 
functions that determine the shape of the functional hyper-planes that 
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delineate the separate classes. For example, when in learning mode, an 
SOM-based neural network system will adjust its weights and vectors to 
reflect modification of how the solution space of all potential classes is 
partitioned among the various classes. 

The application of the unsupervised learning rule behaves the same 
whether the system is training in PTNN mode on a training epoch, or is 
being presented individual epoch data in OLNN mode. The learning rule 
computations of weights and topological changes involve the same types of 
computation for both PTNN and OLNN training. 

The issues previously discussed in Section 2.1 regarding the verification 
of training and learning of a PTNN are again apropos to an adaptive OLNN. 
For example, the contents of the new epoch that forms the OLNN training 
session still need to be quality controlled. While the learning rule algorithm 
or heuristic automates the processing of inputs to generate new 
modifications to neural network weights and topology, it does not perform 
prescreening or pre-selection on the input data. 

2.3.3 Novelty Detection: Implicit Supervision of Learning and 
Operation 

Additional preprocessing to filter out the potential of learning based on 
inappropriate or incorrect data comes under the discipline of novelty 
detection [Marsland 2003]. Statistical outlier detection [Williams 2002] 
from the field of statistical theory is a similar concept. Novelty detection 
applies both to learning and non-learning modes when inappropriate inputs 
would lead to inappropriate outputs, which would be viewed as an example 
of the "garbage in, garbage out" mantra. In this case, novelty detection 
processing could be considered functionally to be one particular form of 
supervision. 

Novelty detection represents one approach to achieving quality control. 
In the case of the PTNN, such qualification of the training epoch often may 
occur prior to the training exercise, so that the novelty detection processing 
effectively may be decoupled from the training process. 

In the case of OLNN training, such a priori novelty detection is not 
possible; however, other general approaches to providing such supervision 
of the learning process exist: 

1. The novelty detection ftinction may be integrated into the OLNN training 
process, so that all necessary supervision is available in real-time. 

2. Partial novelty detection may be performed as part of the real-time 
OLNN training, so that the new learning may be conditionally verified, 
while ultimate verification is performed post facto. 
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Previously, Section 2.2.2 discussed Type I and Type II error situations. 
Dependent on the purpose and functionality of the total system, of which the 
neural network system is one component, the conditional verification may 
refer to either of the above two situations. The Type I error situation would 
be treated as a missed opportunity of not learning when one could have. The 
Type II error situation would be treated as a false alarm of learning that 
occurred when it should not have and that needs to be reversed. 

To support a two-stage conditional-final verification strategy, the abiUty 
and the resources to perform a post mortem analysis are needed. Given that 
the OLNN training is to be subject to a post-mortem review as part of its 
verification, the implication for system design and operation is that the 
results of such OLNN training should be not only re-viewable but also 
reversible, so that the undesirable results of incorrect, inappropriate, or 
simply poor training may be reversed. 

The additional functionality in support of this verification strategy may 
be achieved in a variety of ways. For example, the state of the OLNN 
preserved before the questionable training could be re-loadable. In such a 
situation, the training epoch including the supervised response may need to 
be archived, as well as the state of the network before and after the training. 
This approach would imply a universal systems verification requirement for 
the ability to archive and to recall the state of the OLNN for some point in 
time. The implementation of those mechanisms that address such 
requirements in turn must be verified. 

For a complete, post facto verification, the analysis must consider both 
the epochs on which the neural network was permitted to train and those 
epochs that were rejected by the novelty detection process. Thus, both Type 
I and Type II error situations are fully considered. 

Such complete post facto verification serves more than just the original 
purpose of verifying that the neural network is learning as it is currently 
configured. This analysis also can support consideration of how the system 
might be enhanced and improved to handle other scenarios currently beyond 
its capability but reachable with appropriate modification to the original 
neural network design and implementation. 

2.3.4 Long-Term Verification: Maintaining Consistency 

Statistically speaking, the asymptotic convergence of an estimator to the 
object of estimation is called consistency. In the case of an adaptive OLNN 
that learns and evolves over its lifetime of deployment, learning consistency 
is a very important factor. Neural networks can be viewed mathematically 
as being statistical esdmators. 
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Most nonparametric algorithms are consistent for essentially any 
regression function. Depending on the particular algorithm and the 
particular regression, however, the convergence of such methods can be 
extremely slow. Neural networks modeled after these algorithms, like those 
based on the universal approximators discussed in Section 2.1.3, may require 
significantly large training epochs. 

There exist many consistent nonparametric estimators. Consequently, 
given enough training examples, optimal decision rules can be arbitrarily 
well approximated. Those studied extensively in the statistical literature 
include: Parzen windows and nearest neighbor rules [Duda and Hart 1973], 
regularization methods [Wahba 1982], and alternating conditional 
expectations [Friedman 1991], as well as feed-forward neural networks 
[Rumelhard 1986], and Boltzmann machines [Ackley 1985]. 

Section 2.1.3 discussed how the bias-variance dilemma can affect neural 
network learning performance. In the case of the PTNN, considerable care 
is required in the formation of appropriate training epochs. In the case of 
adaptive continually learning OLNNs, this dilemma re-manifests itself 
through the concept of consistency. The desired level of bias and variance 
achieved during pre-training of the OLNN may later become degraded, 
rather than improved, unless care is given to the online learning process to 
preserve consistency. 

White [1990] has described a procedure by which a feed-forward neural 
network can be extended in a consistent manner. Major elements of the 
method are: 

1. Strategic goal, which is to decrease both bias and variance. The typical 
manifestation of the bias-variance dilemma is to accept the expense of 
increasing one while decreasing the other. 

2. Implementation strategy, which is to gradually decrease both bias and 
variance in a coordinated manner by increasing network size as new 
epochs are applied. 

Bias can be diminished by increasing network size through the number of 
nodes and links in coordination with additional training from new epochs at 
such a rate that the variance also is managed. If nodes are added too 
quickly, bias can increase beyond acceptable tolerance. If they are added too 
slowly, variance can increase beyond acceptable tolerance. 

This procedure for achieving consistency of feed-forward networks also 
can be applied as a general mechanism to manage learning consistency for 
other OLNN architectures. The procedure is not trivial to implement since 
the bias and variance both must tend to zero in coordination with each other. 
The reduction must proceed slowly, in small incremental steps. Otherwise, 
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bias or variance will dominate the training, and the conditions of over-fitting 
and under-fitting may occur as the OLNN continues to learn. 

From a practical standpoint, no neural network can be expected to grow 
in size indefinitely. Consequently, the above described consistency 
procedure must be adapted to the particular problem constraints and 
engineering limitations. On the other hand, the general principle of selecting 
sufficiently small steps by which to train and grow is still valid. 

2.3.5 Incremental Verification: By Degrees 

The previous discussion of consistency naturally leads to the concept of 
incremental verification. The NASA sponsored RIACS Workshop [Pecheur 
2000] on the V&V of adaptive systems raised the issue of incremental 
verification: "How to dynamically verify at 'run-time' a continuously 
adapting system (on-board V&V, incremental V&V, how to recover from 
errors?)" 

As the previous section discussed, neural network learning should 
proceed in relatively small, incremental steps to achieve consistency, i.e., to 
maintain control of bias and variance. Assuring that the bias-variance trade­
off is maintained within the levels planned for the OLNN as the OLNN 
continues to learn is a significant aspect of the ongoing, quasi real-time, 
V&V process. 

The term incremental has multiple dimensions in the context of V&V: 

• Temporal, which is new knowledge acquired incrementally, also may be 
verified incrementally as it is learned. 

• Component, which is verification of new training, may not cumulatively 
re-verify all previous training. 

• Layered, which means the verification may be tiered in levels of 
confidence, with higher confidence levels achieved as addifional testing 
is performed and case history accumulated. 

Dependent on the problem domain being addressed, the verification 
process may emphasize one or more of these dimensions of incrementality. 

As new training is presented to the OLNN over time, learning based on 
prior training may need re-verification. To what extent prior learning should 
be revisited depends on the underlying nature of the knowledge and the 
problem to which it is applied. The temporal nature of OLNN learning falls 
into two general scenarios [Lange 1993]: 

1. Monotonic learning: New training represents knowledge complementary 
to prior training. 
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2. Non-monotonic learning: New training represents knowledge partially 
contradictory to prior training. 

At least in theory, the monotonic learning case should be easier to 
maintain a verified status. However, the practical problem is that while the 
underlying knowledge may be monotonic, the learning process is not. The 
previous discussions of the bias-variance dilemma and learning consistency 
explained the impact of over-fitting and under-fitting. As a consequence of 
the new training, the neural network performance on the prior test epoch 
typically is degraded; although, total performance based on both prior and 
new training may have improved. 

The new training may be incrementally applied to the previously trained 
OLNN in temporal order. In this case, the cumulative training epoch is not 
composed of a randomized sampling of all underlying knowledge, since a 
chronological ordering is imposed. This behavior may be acceptable and is 
indeed desirable when a problem domain is time varying and the OLNN is 
expected to track the underlying knowledge. 

Other approaches for incorporating the new training that reduce and even 
eliminate the time dependency in the training epoch are also available. For 
example, to remove the chronological underpinning, a new cumulative 
training set may be constructed as a randomized epoch that is a sampling 
drawn from all current and prior training, and presented to an initialized 
OLNN from which prior training has been removed. One draw back of this 
approach is the need to accumulate an ever-growing dataset from which to 
sample the new cumulative training epoch. Based on the bias-variance 
dilemma discussion, this epoch, hopefully, will grow slowly. 

Incremental verification of an adaptive OLNN-based controller in an 
aircraft may emphasize temporal aspects since a given flight situation may 
exist only momentarily, and thus the knowledge to be used is momentary. A 
physical control element of an aircraft may become stuck or otherwise 
perform sub-optimally, and the OLNN is to adapt to this situation, until the 
situation is corrected. In such a scenario, the re-verification of prior training 
may be counter-productive, since the current state of the dynamic 
environment is what matters. In this case, some version of a sliding-window 
verification strategy may be more appropriate. 

The underlying knowledge and its application may be decomposed along 
functional dimensions rather than based on chronological considerations. In 
such cases, the training of each functional component may be independently 
verified. However, interactions among the training of two or more 
independent components may occur. This is the situation with a 
classification problem where membership between two classes may be 
ambiguous. 
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An example of incremental verification that emphasizes 
componentization is an interactive voice response unit, such as found in one 
of today's cell phones. Each epoch, the voiceprint of the name of a person 
to be called, represents a separate, conceptually independent, unit of 
knowledge on which the OLNN is trained. Pragmatically, the potential 
exists with each additional epoch for the contamination of prior training 
epochs, dependent upon how similar the voiceprint may be to an earlier 
entry. 

The typical operational strategy is for a new voiceprint to be verified 
when it is first entered. As the implementation of a simple version of cross-
validation, the user must enter the training phrase twice. The first time is 
employed by the neural network to train and a second time verifies that 
training. With successful completion of this point, the ability to recognize 
the new voiceprint when it is spoken is considered verified. However, any 
prior entries have not been re-verified, and some may no longer be correctly 
processed due to contamination of their prior training by the recent training. 
This is another example of the Type I vs. Type II error consideration 
introduced in Section 2.2.2. 

In the case of the voice-activated dialing of the cell phone, the Type I 
error situation is addressed during the actual training, but the Type II 
situation is deferred in a lazy incremental verification mode. In other words, 
"Don't fix it until it is determined to be broken." The potential of having 
introduced a Type II error situation is not deemed serious enough to have the 
cell phone user retest each of the previously trained voiceprints each time a 
new one is introduced. 

The above example is but one of the many ways that the total verification 
of the system can be decomposed based on a multitude of considerations 
including: distinctness or independence of functional components or 
knowledge. Type I vs. Type II error remediation, and urgency to verify 
sooner vs. relaxation to verify later. 

In contrast to the lazy incremental verification approach is the 
employment of neural network systems in safety-critical problem domains. 
The verification of neural network systems in such scenarios can include 
their extensive exercise in a real-world setting, but with the additional 
requirement of independent confirmation by other independent means, until 
a sufficiently broad and complete case history of successful use has been 
accumulated [Lisboa 2001]. With continued successes, such an OLNN 
system may be promoted through a series of confidence levels. A typical set 
of confidence levels could be: 
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• Apprentice, in which every response must be independently confirmed, 
• Novice, in which an ever enlarging well-defined subset of frequent 

situations no longer requires independent confirmation, and ultimately 
• Expert, in which the system itself has become an independent 

confirmation source. 

In the case of an advisory medical diagnostic system, a medical expert 
may review the results produced by the system prior to any action based on 
its recommendations. Providing for independent expert verification of the 
learning and performance of an OLNN in real-time may not be so easily 
realized. 

In lieu of a full expert review by an independent source, other more 
readily mechanized approaches may be employed that: 

• Provide a level of confidence, e.g.. Type I error management, and 
• Reduce the likelihood of catastrophic results, e.g.. Type II error 

management. 

Real-time techniques such as previously discussed novelty detection are 
apropos to such an approach [Marsland 2003]. 

2.4 Fault Management-Based Verification 

Defining characteristics of complex systems, such as are found in flight 
control and robotics applications, include the following attributes: 

• Adaptive, or the capacity or suitability for, or the tendency toward 
change, modification, etc. 

• Autonomous, or being free from external control and constraint in action 
and judgment, independent in mind or judgment, self-directed. 

• Non-deterministic, or the property that a computation or execution may 
yield multiple plausible results. 

Complex systems also may be safety critical, where human safety is at 
risk, or mission critical, where system failure could impact the total mission 
the system is supporting. 

Such complex real-world problems must be solved as best they can be, in 
spite of inherent uncertainties. Consequently, complex systems often may 
perform less than optimally, less than intended or desired, and yet well 
enough to accomplish significant aspects of the original task, and without 
loss of life. 
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This situation complicates not only the systems design and development 
process, but also the V&V process. When the design of complex systems 
incorporates these concepts and means, the V&V of such systems also must 
address the implications of these concepts from a V&V perspective. Recent 
research has focused on the V&V of such complex systems [Pecheur 2001]. 

2.4.1 Fault Management Framework 

Systems design methodologies developed within the field of fault 
management that address the uncertainty inherent in complex systems 
include the following: 

• Fault avoidance: Systems can be designed to be fault-free 
• Fault removal: Faults can be removed from systems following their 

design and implementation. 
• Fault tolerance: Measures can be taken to ensure residual faults do not 

cause failure. 
• Graceful degradation: Perform sub-optimally, rather than cessation of 

ftinction [Fed Std 1037C 2003]. 

These principles and methods not only constitute a framework to guide 
the design, development, and deployment of complex systems, but also 
provide the basis for a V&V framework for complex systems from a fault 
management perspective. 

The cumulative online learning experience of an OLNN changes with 
each new learning epoch. The new epoch may: 

• Strengthen prior learning, 
• Represent new situations not previously addressed by prior pre-training 

or online learning epochs, 
• Contradict prior learning, a non-monotonic situation, or 
• Lie outside the domain that the OLNN is intended to learn. 

Each of the last three situations is prototypical of the situations addressed 
by fault management. 

2.4.2 Judging the Total Learning Experience 

Determination of whether an OLNN should continue to be deemed V&V 
certified at any given point in time involves an analysis of the cumulative 
learning experience of the OLNN. That judgment encompasses three areas: 
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1. Nature of the data applied as an OLNN learning epoch 
2. Learning mechanism capabilities 
3. Context surrounding that data 

The first area refers to the quality of the inputs to the OLNN including 
correctness, accuracy, and precision. If design assumptions made regarding 
data quality are not satisfied, then the usefulness of results produced by the 
OLNN is questionable. Concern also exists as to whether such data should 
be the basis for further learning. This topic was addressed in Section 2.1.2. 

Various aspects of the neural network system determine the learning 
mechanism capabilities. This topic was explored in Section 2.L1. 

The context of the epoch encompasses additional information not directly 
ingested by the OLNN that, nevertheless, could be pertinent to whether the 
epoch ought to be learned or ignored, or requires special treatment. 

Based on faulty management principles, the contextual space of the 
OLNN may be partitioned into normal operations for which the system is 
designed or abnormalities for which the system is not explicitly designed 

Abnormalities are further decomposed into abnormalities the OLNN is 
expected to accommodate, and those that cannot or purposely should not be 
accommodated. 

2.4.3 Context Safety Monitoring 

The approach to V&V of accommodating anomalies complements the 
fault management concepts of fault avoidance and fault tolerance. It 
assesses to what extent and by what means the OLNN can tolerate various 
types of abnormalities or faults. 

Dr. Bojan Cukic has considered the concepts of data sniffing and novelty 
detection as potential approaches to address this problem [Liu 2002a]. Data 
sniffing involves real-time monitoring of inputs and outputs of the OLNN to 
identify the two situations: one to be learned by the OLNN, the other to be 
ignored [Liu 2002b]. Novelty detection is defined as the process of finding 
or detecting novel events or data. 

Novelty detection serves two roles: 

1. OLNN learning: Identify abnormal inputs that should not be part of a 
learning regime. 

2. Non-learning mode: Avoid inputs outside the scope that the OLNN is to 
handle. 

In both cases, the OLNN's corresponding outputs are judged novel, as 
they would be based on novel or questionable inputs. 
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Researchers have proposed and investigated various implementations of 
this technique. The approaches fall within two general categories: 

1. Statistical, including certain data mining strategies, and 
2. Machine learning, which employs neural networks or other connection 

models to predict novelty. 

Marsland [2003] has completed a comprehensive survey of novelty 
detection and its relationship to learning systems. Novelty defined by 
statistical models is based on the unconditional probability density function 
of data. In machine learning approaches, novelty is based on pre-defined 
classification of data and on the learning performance of such models. 

2.4.4 System Adaptation: Specialization 

This first step, recognition of a novelty, is the easier aspect of fault 
management. The more complicated aspect is determination of what should 
be done regarding detected novelties. Actions directed at the neural network 
can include adjustment of the OLNN's learning epochs, algorithms, and 
neural network architecture. Other actions may be directed toward the 
neural network environment. 

Perhaps the simplest action is data blocking: 

• Blocking inputs to the OLNN reduces potential of incorrect or 
inappropriate learning. 

• Blocking outputs from the OLNN prevents delivery of questionable 
results to downstream system components. 

In terms of fault management, such an approach necessarily presumes 
that fall-back, or fail-over, methods are available to the total system external 
to OLNN processing so the total system is able to function in such cases 
without benefit of the OLNN. 

Such simplistic actions may be apropos for the case where only normal 
well-defined situations constitute the total operational domain of the OLNN. 
Outlier situations [Hodge 2004] are categorically rejected. 

This scenario is typical of a skills-based problem domain where the 
purpose of online learning is to improve upon prior learning, but otherwise 
to avoid new or novel situations. OLNN learning in this scenario falls into 
the category termed specialization. Since emphasis is on achieving system 
improvement, the emphasis of fault management is on its first two 
dimensions: fault avoidance and fault removal. 
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In what are otherwise normal contexts where no novelty is detected, the 
OLNN through learning becomes increasingly matched to the addressed 
problem. The specialization scenario constitutes continual refinement and 
improvement of what already is known. This is a monotonic learning 
situation, one in which the system does not learn knowledge that contradicts 
what already is known [Mili 2002]. 

2.4.5 System Adaptation: Generalization 

More complex than specialization is the problem space category termed 
generalization, to successfully perform an increasingly varied set of tasks. 
In the case of generalization, what is considered and treated as abnormal is 
continually changing. To detect a novel situation and simply ignore it like it 
was in the previously discussed data-blocking scenario, is not an acceptable 
solution. 

The novelty judgment process includes both the detection of a novelty, 
and an assessment of what should be done. The OLNN system is to learn 
that total judgment. For this type of system, the emphasis of fault 
management is on system robustness through its last two dimensions: fault 
tolerance and graceful degradation. 

The generalization scenario expands the domain of operations and hence 
breadth of knowledge of the OLNN. The system must continually 
redistribute its finite set of resources; it can learn, recall, and execute only so 
much, so quickly. Consequently, the generalization of the OLNN may result 
in it performing a prior task less well than before, yet still within accepted 
tolerance. This is an example of a non-monotonic learning situation [Bain 
1991]. 

As the OLNN system adapts to current anomalies, they become 
subsumed into the normal operational domain of the system. For this class 
of system, the previously introduced normal vs. abnormal dichotomy is 
further expanded: 

1. Normal today, or part of normal operations 
2. Conditionally abnormal, or today abnormal, but can accommodate via 

neural network training 
3. Absolutely abnormal, or always to be avoided 

Absolutely abnormal events are handled in the same manner for both the 
generalist and the specialization scenarios. Absolutely abnormal 
circumstances are to be detected and avoided - absolutely! Furthermore, 
they need to be absolutely determinable, likely by algorithmic methods. 
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For example, a fighter plane absolutely is not to accelerate beyond a pre­
determined critical velocity. This value is an external system design 
constraint that can be algorithmically determined and enforced. 

The boundary between the conditionally abnormal and the absolutely 
abnormal may be continuous, which is a situation where graceful 
degradation becomes an issue. In the case where this boundary is 
discontinuous, an arbitrary margin of safety may be suggested. 

2.4.6 Conditionally Abnormal Novelties 

Novelty management involves two components: 

1. Detection, which is recognition of the situation, be it by data sniffing or 
novelty detection. 

2. Judgment, which is assessment of how to respond, both now and in the 
future. 

Novelty judgment can involve many possibilities ranging from 
categorically ignoring a detected novelty, to the potentially complex process 
of capturing relevant information for the construction of an appropriate 
learning epoch that responds to anticipated future occurrences of that 
novelty. 

A simple form of novelty detection is for the system component 
providing input to the OLNN to also indicate a confidence in the validity and 
accuracy of the input. This judgment could range from a simple "go/no go" 
flag, to a detailed analysis of that input. The simplest novelty detection 
provides the OLNN with no guidance as to why particular inputs have been 
flagged. 

Introduction of boundary artifacts, such as margin of safety rules, leads to 
other considerations. A particularly interesting case involves determination 
of "when to break the rules," a problem found of human-in-the-loop 
systems. This problem has been studied extensively by human factors 
analysis (HFA) [Naval Safety Center 1996], a special subset of fault 
management that focuses on human-in-the-loop systems. Based on HFA, a 
priori decisions are made regarding how human-in-the-loop systems can be 
better designed and operated [Reason 1990]. This insight is generally 
apropos to complex systems, with or without a human-in-the-loop, and to 
OLNNs in particular [Smith 2003]. 
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2.4.7 Managing System Inertia and Momentum 

More detailed examples of novelty detection analysis and novelty 
judgment could consider not only absolute changes of input values, but also 
the rate of change of inputs within an otherwise normal absolute range. 

Rather than the use of arbitrary margin of safety rules, the concept of 
system inertia and momentum leverages rate-of-change information 
collected via data sniffing together with knowledge of the system's absolute 
boundaries to provide a foundation for predicting the system's likelihood of 
having sufficient time, flexibility, and resources to adapt to impending or 
evolving situations. 

The novelty management process may be incorporated into the OLNN 
learning process so that an OLNN's novelty detection and response can 
improve through online learning. The novelty management subsystem may 
itself be implemented as another OLNN or embedded within the original 
OLNN. 

2.4.8 Fault Avoidance vs. Fault Tolerance 

The discussion of fault management verification up to now has focused 
on fault avoidance in the sense of preventing any occurrence of improper 
learning or inappropriate processing by the OLNN. This perspective 
presumes that all novelties are detectable and that appropriate actions can 
always be taken in a timely manner. The existence of perfect estimators and 
predictors enable fault avoidance. 

In the absence of such perfection, fault removal, fault tolerance, and 
graceful degradation move to center stage. A fault can occur in a variety of 
ways and for a variety of reasons. It could be an isolated event, or it could 
be the result of a chain of events, as typified in human factors analysis [Bird 
1974]. 

The novelty may be improperly recognized or diagnosed, resulting in a 
false positive, a situation is treated as a novelty when in fact it isn't, or in a 
false negative, where a given novelty deserving treatment is not detected. 
Such situations are further complicated when the true nature is not or cannot 
be resolved conclusively until after the fact. 

From a fault tolerance perspective, data sniffing and novelty detection are 
applicable not only to guide correct and proper learning, but also to detect 
and remediate incorrectly or inappropriately learned information. Such fault 
tolerance principles are embodied, for example, in the two-phase commit 
employed by distributed database systems. 

Finally, an OLNN may be employed in complex systems where the 
handling of what would be novelties for most systems is in fact the norm for 
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that OLNN. The verification of such complex systems must be able to 
support such fault management concepts as fault removal, fault tolerance, 
and graceful degradation. The V&V of such systems should address not 
only their implementation of fault avoidance, but also their support of fault 
removal, fault tolerance, and graceful degradation. 

3. SUMMARY 

The reader is presumed to have a general knowledge of V&V 
methodologies. This chapter has attempted to provide a solid grounding and 
understanding regarding major verification issues that are peculiar to neural 
network based systems. 

Four general areas have been addressed: 

1. White-box verification: Verification of the major system and structural 
components, which include not only the neural network architecture and 
topology, but also the learning process and the knowledge to be 
encapsulated within the neural network. 

2. Black-box verification: Verification of the neural network functioning 
and processing, which includes both its learning and its generalization 
modes of operation. 

3. Adaptive verification: Verification issues focused on adaptive neural 
network systems. 

4. Fault management verification: Verification of the neural network 
system to avoid or recover from error or fault situations. 

The references are selected to provide the reader with a comprehensive 
set of survey references that are readily assessable to those with limited 
knowledge of neural network technology. 
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NEURAL NETWORK VISUALIZATION 
TECHNIQUES 

Marjorie Darrah 
Institute for Scientific Research, Inc. 

1. INTRODUCTION 

Visualization techniques are important for the verification and validation 
(V&V) of neural networks. Designers, end-users, and V&V practitioners 
need to understand the design and performance of the neural network 
system. Visualization can be useful in meeting these goals. 

Understanding the design and operation of neural networks is no 
elementary task. Neural networks used for solving real-world problems may 
have several thousand connections. Understanding the connections formed 
by the network during the learning process requires making sense of a vast 
amount of real-valued parameters. Visualization can help bridge the 
cognitive gap by representing relationships in the neural network and by 
examining how those relationships evolve. 

In this chapter various visualization techniques are presented. Several 
commonly used commercial neural network design packages will be 
introduced along with a discussion of their visualization capabilities. Also 
included is a discussion of how visualization techniques can be used for 
V&V at various stages across the software development lifecycle. 

Understanding the design and operation of neural networks is no 
elementary task. Neural networks used for solving real-world problems may 
have several thousand connections. Understanding the connections formed 
by the network during the learning process requires making sense of a vast 
amount of real-valued parameters. Visualization can help bridge the 
cognitive gap by representing relationships in the neural and by examining 
how those relationships evolve. 



164 Chapter 7 

There are two types of neural network visualization techniques that may 
provide benefit: whitebox and blackbox. Whitebox techniques provide a 
view of the internal workings and processes of the neural network. These 
techniques could be used together with flow analysis to assist understanding 
of the interactions of the neural network nodes, links, and weights. 
Blackbox techniques provide representations that correlate inputs to outputs. 
The interpretation of the visual representation in a blackbox technique is left 
up to speculation or intuition. An example of such a blackbox technique 
would be a 3D flight simulation that shows the reaction of the aircraft with a 
neural network controller in use. 

Visualization may assist neural network users in discovering data 
features whose importance was not previously recognized. Humans have 
highly developed abilities for visual pattern recognition that can be 
capitalized when vast quantities of data are transformed into a qualitatively 
different form. Changes that occur during training may also be detected 
using these techniques because errors or patterns may appear as visual 
anomalies. Additionally, visualization software can provide an interactive 
mechanism that enables the user to adjust parameters and quickly see the 
effects of the changes. 

Visualization can aid in both developing and understanding systems 
involving neural networks. Personnel involved in verifying and validating 
such systems may have little or no knowledge of the workings of a neural 
network. Through the use of visualization techniques, such as simple neuron 
models, the MATLAB Neural Network Toolbox, or even 3D visualizations, 
the understanding can be increased. 

2. VISUALIZATION TECHNIQUES FOR NEURAL 
NETWORKS IN ACADEMIC LITERATURE 

The first step in understanding a neural network is to comprehend the 
design. For most neural networks there are representations that present 
network structure and the way connections are formed to create the flow of 
data from input to output. Chapter 4 gives an overview of various neural 
network structures and provides visual representations of these structures. 

Many visualization techniques that assist in the understanding of neural 
networks have been discussed in the academic literature. Craven and 
Shavlik [1992] discussed several visualization techniques in an overview 
paper titled "Visualizing Learning and Computation in Artificial Neural 
Networks." Many of the techniques summarized in this section can be 
further studied in their survey paper. Other authors, such as Vesanto [1998], 
have even used virtual reality 3D models to try to gain understanding of the 
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networks. These techniques provide insight into the decision-making and 
the learning processes of neural networks. This section introduces several 
techniques with a brief description of how they assist in the understanding of 
the neural network. 

The Hinton diagram, developed in 1986, was one of the first visualization 
methods. It provides a compact visual display of the weights and biases 
related to a particular neural network [Hinton 1986]. Fig. 7-1 depicts a 
neural network and the Hinton diagram to visualize the network. 

Hinton 
diagram 

Neural 
network 

TO 
OLTTPUT 

TO FROM 
HIDDEN UNITS II 

OUTPUT 

FROM 
INPUTS 

r 

s.,n n D n 
Figure 7-1. Simple Neural Network and Related Hinton Diagram 

These diagrams show the two hidden units and the output unit of the 
network. The boxes in the lower part of each diagram depict weights from 
hidden units, and the boxes in the middle of each diagram depict a weight to 
the output unit. A unit's bias is drawn in the position in the unit's diagram 
where weights to and from the unit are shown in the other diagrams. The 
Hinton diagram is a rather weak method for visualization because the 
topology is not readily apparent from the diagram, and it does not clearly 
show how a unit partitions its input space. 

Wejchert and Tesauro [1990] developed the bond diagram. This 
visualization method illustrates the sign and magnitude of each weight and 
bias in the network, but, unlike the Hinton diagram, it does show the 
topology of the neural network. In the bond diagram each unit is represented 
as a disk. The size of the disk indicates the magnitude of the unit's bias. 
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The bonds that link the disks represent the weights. The amount (width) of 
the bond indicates the magnitude of the weight, and the color represents the 
sign. Fig. 7-2 below shows a bond diagram for the simple neural network 
structure presented in Fig. 7-1 on the previous page. 
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OUTPUT 
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Figure 7-2. Bond Diagram 

One way to visualize the learning process is to graphically display the 
movement of the hyperplane in the input space of the unit that the 
hyperplane represents [Munro 1991; Pratt 1991]. A hyperplane diagram can 
show how hidden units make decisions in an input space defined by input 
units, or it can show how output units make decisions in an input space 
defined by hidden units. Fig. 7-3 shows the hyperplane diagram of a neural 
network. 
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Figure 7-3. Hyperplane Diagram 

The axes of the diagram denote the range of activations that may be 
propagated to the units through their incoming connections. Data points that 
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a network is learning to classify may be plotted in the space. Each hidden 
unit of the network is represented by the hyperplane (in this case the line) 
that indicates how the unit is partitioning the input space. The learning 
process is automated by showing the movement of the hyperplane as the 
weights and biases of the network are changed. 

One limitation of a hyperplane diagram is that only two- or 
three-dimensional input spaces can be depicted. Selecting a two- or 
three-dimensional projection of the actual input space may be used to depict 
an input space of higher dimensionality. There may be a problem choosing 
which projection to view. Statistical techniques, such as principal 
component analysis or canonical discriminant analysis, may be useful in 
determining which projections would provide the most information. 

Hyperplane representation can also be animated. Pratt and Nicodemus 
[Pratt 1993] reported on case studies using a hyperplane animator that they 
developed, pictured in Fig. 7-4. The animator is able to display the 
relationship between a network and the training data, and is also able to 
show the changes in that relationship during learning. 
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Figure 7-4. Sample Screen from Hyperplane Animator (© 1993 IEEE) 
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The trajectory diagram is another visualization method developed by 
Wejchert and Tesauro [1990]. The trajectory diagram is designed to provide 
insight into the weight space for a given problem. A trajectory diagram 
depicts the movement of a given unit through the weight space. Fig. 7-5 
shows the trajectory over a hypothetical training session. 

Figure 7-5. Trajectory Diagram 

The trajectory in Fig. 7.5 above is plotted in the space defined by the two 
weights impinging on this hidden unit. The thickness of the trajectory line 
indicates the network error along the trajectory. A network unit at a given 
point in time is plotted as a point in the diagram; the coordinates of the point 
are specified by the values of the weights feeding into the unit. As learning 
progresses, the point is replotted to reflect the updated values of its incoming 
weights. 

A weakness of the trajectory diagram is the inability to visualize 
high-dimensional weight spaces. These diagrams have only minimal 
usefulness because of this limitation. Attempts to visualize higher 
dimension weight spaces by projection may lead to diagrams that are not 
unique. 

A graphical interface for visualizing knowledge-based neural networks 
has been developed by the University of Wisconsin. A weakness of 
conventional neural networks is that they provide no way to exploit existing 
knowledge about the problem to be solved. The knowledge-based neural 
network (KBANN) algorithm [Towell 1990] provides an approach to 
incorporating existing knowledge into a neural network. The KBANN 
algorithm uses a knowledge base of domain-specific inference rules in the 
form of PROLOG-like clauses to determine the topology and initial weights 
of a neural network. The domain theory does not need to be complete or 
correct; it needs only to support approximately correct domain reasoning. 
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KB ANN translates a domain theory into a neural network in which units and 
links correspond to parts of the domain theory. Consider the domain theory 
for recognizing cups, which is depicted in Fig. 7-6. 

open-vessel 

cup 
stable 
liftable 
graspable 
open-vessel 

stable, liftable, open-vessel 
flat-bottom 
graspable, light 
has-handle 
has-concavity, concavity-up 

Figure 7-6. Hierarchical Structure of Cup Domain Theory 

The hierarchical structure of the domain determines the topology of the 
knowledge-based neural network: the input units of the network represent 
the base-level facts of the domain theory, the hidden units represent 
intermediate conclusions, and the output unit represents the final conclusion. 
After the network topology and initial weights have been determined by 
KB ANN, the network is trained using the back-propagation algorithm and a 
set of training examples. After training, refined rules can be extracted from 
the network [Towell 1991]. 

Lascaux is another tool developed by the same group at the University of 
Wisconsin. It assists in further visualizing the neural network both during 
and after learning. This tool enables visualization of the learning process by 
depicting forward propagation of activations, backward propagation of error, 
and changes to the weights and biases of the network. Each box represents a 
network unit. Lines that connect the units represent network weights. The 
thickness of each line indicates its magnitude, with positive weights drawn 
as solid lines and negative weights as dashed lines. Fig. 7-7 on the next page 
shows the interface provided by the Lascaux tool. 
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Figure 7-7. Lascaux Depiction of a Knowledge-based Neural Network 

The diagram in Fig. 7-7 plots the activation function for a unit on a scale 
that is defined by the range of the net input values that the unit could have. 
Thus, the rightmost edge of the diagram shows the activation value that 
would result if the unit were to receive its maximum net input. The leftmost 
edge shows the activation that would result if the unit were to receive its 
minimum net input. The actual net input that results for a given pattern is 
displayed as a solid vertical line in the diagram. This displays the effective 
activation. It is valuable to describe the nature of the activation function 
relative to its weight space and to show the relative influence of the weights 
and biases. Lascaux also provides a mechanism to specify a "freeze" display 
that lets the user progress step-by-step through a set of input patterns. 

Lascaux provides the same functionality whether it is used with 
conventional neural networks or with KBANNs. The tool aids in 
understanding the refinements that occur during learning by animating the 
weight changes. This can help explain why the network has made a 
particular decision. 

Vesanto [1999] has developed several techniques for visualizing a Self-
Organizing Map (SOM). An SOM is an unsupervised neural network that 
organizes a set of model vectors during training so as to represent the 
distribution and topology of the training data. One of the advantages of the 
SOM is that the structure is highly visual. When the model vectors are 
organized on a 2D grid, the SOM can be visualized using methods like 
component planes view and the unified distance matrix (u-matrix). 
Typically the visualization is done using color images. 

Fig. 7-8 on the next page represents the overall shape of the data cloud by 
making projection of the prototype vectors to a lower dimension. Although 
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the reproductions of these figures are in grayscale, the color in the original 
figures adds much to the information. The reader is encouraged to look at 
the original figures for further investigation. Two projections of the SOM 
trained on data have been made, one is 2D (a) and the other is 3D (b). In (a) 
each dot corresponds to one map unit, the color of which has been taken 
from the color-coding in (c). Each map unit has been connected to its 
neighbors with lines. From (a) several clusters can be seen as concentration 
of data. The 3D-projection in (b) provides a better view of the separation. 

(a) 2D projection (h) 3D projection (c) Color coding 

Figure 7-8. SOM Visualizations [Vesanto 1999] 

Vesanto provides other visual techniques for understanding SOMs. In 
Fig. 7-9 (a) on the next page each dot corresponds to one map unit. The x-
and y-coordinates of the dots have been taken from two variables of the 
vectors. Each dot is also given a color according to the color-coding of the 
map units shown in (b). In addition to color-coding, (b) also uses size to 
indicate clusters in the map. It can be seen that for most units, especially 
yellow color-coding, the two components are linearly correlated. 
Conversely, the units with orange color have another distinct pattern that 
tells information about the relationship of the two variables. 

Along with the many other visual techniques for SOMs discussed by 
Vesanto in his paper, he also has a website [Vesanto 1998] that shows how 
he used Virtual Reality Modeling Language (VRML) to develop 3D 
visualization tools for the analysis of the SOM. VRML offers powerful and 
easily useable methods for visualizing 3D objects and scenes and enables the 
user to interact with the VRML model. Fig. 7-10 is a 3D model of a SOM 
that has been visualized using VRML. Several views are available and the 
model can be manipulated and moved in the virtual space. 
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Figure 7-9. SOM Scatter Plot and Color Map [Vesanto 1999] 
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F/gt/re 7-7^. 3D Model of a SOM using VRML [Vesanto 1998] 

3. COMMERCIAL SOFTWARE PACKAGES WITH 
VISUALIZATION CAPABILITIES 

There are many commercial packages for developing neural networks. 
These packages offer various graphical user interfaces (GUI) and various 
visualization techniques. This section focuses on what several different 
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software products offer with respect to the visualization of neural networks 
to facilitate understanding. 

3,1 MATLAB® Neural Network Toolbox 

The MATLAB® Neural Network Toolbox^ is an additional software 
package for MATLAB that provides functions, utilities, and help for creating 
and training neural networks. Its usefulness in regards to the V&V of neural 
networks lies with simulation and visualization. 

The tool allows for construction of most types of neural networks and 
even provides special utilities for back-propagation networks, radial basis 
functions, SOMs, and recurrent networks. Once in a model within 
MATLAB/Simulink®, the network can be trained, tested, simulated, and 
studied. Since MATLAB was designed as a mathematical analysis tool in 
general, data anywhere in a network is easily accessible for viewing and 
further manipulation. This means the data is available for analysis utilities 
like interpolation, statistical analysis, equation solvers, optimization 
routines, and any of the other powerful MATLAB functions. A system 
analyst can plot the training error function, watch the change in the weight 
matrix, and get real-time network outputs to verify their correctness. The 
toolbox can be used in both MATLAB and Simulink. 

MATLAB Simulink and Neural Network Toolbox provide 
comprehensive support for many proven neural network paradigms, as well 
as a graphical interface that allows design and management of neural 
networks. The Neural Network Toolbox simplifies the creation of 
customized functions and neural networks. It has a GUI for creating, 
training, and simulating neural networks and has visualization functions for 
viewing performance. 

One feature of MATLAB Simulink is the automatic generation of neural 
network simulation blocks. In Fig. 7-11, a three-layer neural network has 
been converted into Simulink blocks indicating its structure. This tool can 
be used in the design activity to achieve a detailed design for the software 
component. 

Another visualization capability offered by this tool is the ability to 
model control system applications. Neural networks have been applied to 
the identification and control of nonlinear systems. The Neural Network 
Toolbox includes descriptions, demonstrations, and Simulink blocks for 
popular control applications: model predictive control, feedback 
linearization, and model reference adaptive control. 

http://www.mathworks.com/products/neuralnet/ 
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Figure 7-11. A Three-Layer Neural Network Converted into Simulink Blocks 
(Reproduced courtesy of The Mathworks) 

For testing activities, a Simulink model that includes the neural network 
control block and plant model could be used. The example below shows a 
model for predictive control of a continuous stirred tank reactor (CSTR). In 
Fig. 7-12, the upper left window shows the CSTR plant model that includes 
a neural network block. The other windows allow one to visualize 
validation data (top right), to manage the neural network control block 
(lower left), and the plant identification (lower right). These visualization 
features of Simulink could enhance the integration testing activities. 
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Figure 7-12. Simulink Model that Includes the Neural Network 
(Reproduced courtesy of The Mathworks) 

3.2 BrainMaker by California Scientific Software 

BrainMaker Neural Network Software"* has application to areas such as 
business and marketing forecasting, stock, bond, commodity, and futures 
prediction, pattern recognition, and medical diagnosis. No special 
programming or computer skills are necessary to use the software. All that 
is needed is a PC or Mac and sample data to build a neural network. 

BrainMaker offers a GUI that allows some analysis of the neural 
network. After the network is trained, you can switch the display over to 
show numeric values, allowing you to edit the exact value of the inputs 
directly on the screen. The network instantly runs your new numbers and 
predicts an output. 

BrainMaker has extremely flexible input and display formats. Below in 
Fig. 7-13 BrainMaker is learning optical character recognition. The input is 
a graphic picture of the number nine; the network is indicating with its 
output that the probability is very high that this is a picture of a nine, and 
very low that this is a picture of any other digit. 

http://www.calsci.com/ 
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Figure 7-13. BrainMaker 

Also, shown in Fig. 7-13 are two of BrainMaker Professional's graphs: 
the network progress display, which shows us graphically how the average 
error has declined over the course of training, and the connection 
histograms, which indicate to us how much of the network's capacity is 
being used. The histogram display shows us if the network has too many 
neurons (good memorization, poor generalization), too few neurons (not 
enough capacity to learn this problem) or just right (optimum generalizing). 

BrainMaker also includes the following analysis tools: 

Sensitivity Analysis to show which inputs determined results 
Neuron Sensitivity to show the total effect of one input on results 
Global Network Analysis reports how your network reacts to all facts 
overall 
Contour Analysis shows color peaks and valleys of response to pairs of 
inputs 
Data Correlator finds important data and optimum time delays 
Error Statistics Report to check network error rate during training 
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7. Print or Edit Weight Matrices to examine and customize network 
internals 

8. Genetic Training Option to train variations of the design and shows 
which was the best 

3.3 NeuroShell® 2 by Ward Systems Group 

NeuroShell® 2 combines neural network architectures, an icon driven 
user interface, utilities, and options to give users a neural network 
experimental environment. It is recommended for academic users, or those 
users who are concerned with classic neural network paradigms like back-
propagation. Users interested in solving real problems should consider other 
Ward Systems Products^ such as NeuroShell Predictor, NeuroShell 
Classifier, or the NeuroShell Trader. 

NeuroShell 2 includes graphics utilities such as line charts, bar charts, 
scatter plots and high- low-close graphs. Options allow the user to add 3-D 
effects and change colors or types of graphs. These graphics facilities 
enable the user to look for patterns in the data 

Before and after network processing, the Variable Graphs module may be 
used to create different types of graphs: 

1. Graph Variable(s) Across All Patterns - graph different types of 
variables, such as advertising expenditures and cost of goods sold, across 
all patterns in a file. This graph is also used for graphing time series 
data. 

2. Graph Variable Sets in a Pattern - this graph can be used to examine data 
if all of the variables in a pattern are of the same type, e.g., 100 points in 
a physiological signal such as an electrocardiogram. 

3. Correlation Scatter Plot - this graph is a scatter plot of one variable 
against another through all patterns. The linear correlation coefficient is 
computed for each graph. 

4. High-Low-Close Graph - this graph allows the user to select variables 
from the data file that are displayed as the high, low, and close values of 
a stock price. The graph reveals trends in the user's data. 

5. Training Graphs - NeuroShell 2 allows the user to display graphs of 
training set/test set errors while training back-propagation networks. 
When training Kohonen networks, the user can display a graph of 
category distributions in either a bar or pie chart. The Probabilistic 
Neural Networks and General Regression Neural Networks Learning 

5 http://wardsvstems.com 
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Modules allow the user to display a smoothing factor optimization graph. 
GMDH nets graph the criterion value for the created formula against the 
layer number. 

The graph below in Fig. 7-14 shows an example of a graph generated by 
NeuroShell 2 that could be used to look for patterns in the data. 
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Figure 7-14. NeuroShell 2 Graph 

NeuroShell® Predictor 

I V4lTlM.lt?E=3 

This product is used for forecasting and estimating numeric amounts 
such as sales, prices, workload, level, cost, scores, speed, capacity, etc. 
NeuroShell® Predictor is a simple step-by-step process that uses recognized 
forecasting methods to look for future trends in the user's existing data. It 
contains the both neural network and statistical prediction algorithms. 

Figures below show two different graphical representations that allow the 
user to gain insight into the neural network. Fig. 7-15 shows the network 
training status, giving information on network performance, hidden neurons 
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and a graph of actual vs. predicted values. Fig. 7-16 shows the estimated 
relative importance of each variable in the model. 
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Figure 7-15. NeuroShell Predictor Training Status 
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Figure 7-16. NeuroShell Predictor Relative Importance 
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3.5 Cortex Pro by Michael Reiss 

Chapter 7 

Cortex-Pro^ is a specialized environment for the development and 
simulation of neural networks. Cortex-Pro can handle a variety of neural 
network types. 

When a network is built in Cortex-Pro, it is automatically displayed on 
the screen. The user can define the characteristics of the display. For 
example, size, gray scales, numbers, or other attributes can represent the 
activities or outputs of nodes. 

The Cortex-Pro language has general graphics commands for creating 
pictures and diagrams associated with the user's networks. By using 
commands in the Cortex-Pro language, the user can plot graphs of the user's 
network data. General graphics capabilities allow the user to draw complex 
pictures in special "graphics windows". 

Some examples of screen displays from various applications are included 
in Fig. 7-17, Fig. 7-18 and Fig. 7-19. 

Figure 7-17. Cortex Pro Screen Shot 

www, rei ss. demon. co. uk/webctx/intro .html 
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and tes t data. 

Figure 7-18. Cortex Pro Screen Shot 

nou you could try re-learning uitii a different learnrate/nonentun 
or a different nunber of hidden nodes. Or you could change the 
training set to any of "AMD", "OR** or "XOR". 

Note: the uelghts uill autonatically be randonised at tiie start 
of learning. 

Figure 7-19. Cortex Pro Screen Shot 
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.TM 3.6 Partek Predict by Paratek Incorporated 

Paratek^ provides software and services for data analysis and modeling. 
These tools provide a combination of statistical analysis and modeling 
techniques and modern tools such as neural networks, fuzzy logic, genetic 
algorithms, and data visualization. Partek Predict^^ is an advanced toolkit 
for Predictive Modeling, This software package includes a trainable 
Multilayer Perceptron neural network. 

Fig. 7-20 on the next page is an example of the graphical interface 
depicting the numerically selected structural properties that are predictive of 
drug activity. A neural network was used to build a predictive model. 
Selecting a point with the mouse displays the corresponding compound. The 
screen display shows the visual tools available. 
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Figure 7-20. Partek Predict Screen Shot 

' http://www.partek.com/ 
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3,7 havBpNet++, havFmNet++, and havBpNet:J by 
hav.Software 

havBpNet++ and havBpNetJ by hav.Software^ are, respectively, C++ 
and Java class libraries that implement feed-forward, simple recurrent 
(sequential), and random-ordered recurrent nets trained by back-propagation 
and can be used for both stand-alone and embedded network training and 
consultation applications. 

havFmNet++ and havFmNetJ are, respectively, C++ and Java class 
libraries which implement Self-Organizing Feature Map nets. Map-layers 
may be from one to any dimension. havFmNet may be used for both stand­
alone and embedded network training and consultation applications. 

havETT is a simple demo program written in Visual Basic which uses the 
DLL version of the havBpNet++ library to allow a user to define, train, save, 
restore and consult a simple 3 layer network with optional use of recurrent 
layers. 

In havBpETT, the main screen in Fig. 7-21, which can be found on the 
following page, presents both a toolbar and an information display. The 
toolbar may be used to select overall actions (such as data or network 
control). Both buttons and menu items are provided for all main actions. 
The information display presents a summary of certain layer and network 
parameters. Also provided is an information display line in which messages 
will appear as the cursor is placed on various buttons and fields. 

havDuETT - vcr. 2.1 W I P - AJpha-1 
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Figure 7-21. Network Description Screen 

The Network Control screen in Fig. 7-22 is used to describe the overall 
network's configuration. Connections between layers are enabled/disabled 

' http://www.hav.com/ 
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by clicking on the connectors located under a layer. Inactive connections are 
dashed light-gray lines. Active connections are color coded according to 
their type: Forward, Weighted-Copy Recurrent and Random-Order 
Recurrent. Layer parameters are entered for each layer individually. A layer 
is selected by clicking on that layer. 
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Figure 7-22. Network Control Screen 

The Layer Description screen in Fig. 7-23 allows the user to set various 
layer parameter values. 

When a layer button in the Network Control screen is cHcked, a sub-
screen is opened that allows the user to set/select the values of various 
parameters associated with the layer. Examples of these parameters are 
layer-size, learning-rate (Beta), momentum (Mu), etc. 

By selecting the Accept button, the current parameter values are 
communicated to the system. 

From the Training Control screen, the training can be started or stopped. 
The error-mode can be controlled to specify that the network should be 
saved to disk each time the network's performance is better than it has yet 
been. On the training window, selecting the appropriate items can make 
changes to certain network and layer parameters. 

Both a digital and graphical display of network performance is presented 
toward the bottom of the Training Control window. A graph will show the 
percent-error and may be turned on or off as desired. Turning the graph off 
will noticeably increase training speed for smaller nets with relatively small 
training-data sets. When the graph is off, it is still updated for use at a later 
time if desired. 
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Figure 7-23. Layer Description Screen 

4. USEFULNESS OF VISUALIZATION 

Visualization techniques can be evaluated in a variety of ways. Many 
books and articles have dealt with visualization issues from web page design 
to scientific visualization. The criteria in Table 7-1 can provide a means to 
evaluate a specific visualization technique or software application to 
determine whether it provides useful visual information. Freitas [2002] in a 
paper titled "On Evaluating Information Visualization Techniques" outlines 
four classes of criteria for testing usability of visual representations. The 
four classes are completeness, spatial organization, codification of 
information, and state transition. Other authors use similar criteria and 
classification schemes. 

4.1 Visualization Techniques Used Across the 
Development Process 

Many visual techniques can assist V&V in the Development Process for 
neural network software. Development V&V activities, such as concept 
(selecting architecture), requirements (defining functional and performance 
requirements), design (designing for software component and training of the 
neural network), implementation (transforming design into executable 
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Table 7-1. Criteria for Evaluating Visual Techniques [Freitas 2002] 
Criteria Description Affected By 
Completeness 

Spatial Organization 

Codification of 
Information 

Changes in Spatial 
Organization 

All the semantic content of the data 
is displayed 

Overall layout of visual 
representation; 
Ease of locating information on the 
screen; 
Overall distribution of information 
elements in the representation 
Mapping of data elements to visual 
elements; 
Use of additional symbols or 
realistic characteristics used for 
building alternative representation 
Rebuilding the visual representation 
after a user action 

Geometric or visual 
constraints; 
Cognitive complexity 
Presentation of context while 
displaying a specific element 
in detail 

Perception of the user 

Processing speed; 
Complexity of the visual 
display 

representations), and testing (software testing and simulation), may be 
addressed through the use of visualization tools. Many of the examples 
provided below are related to the neural networks used by the Intelligent 
Flight Control System (IPCS) project (see Foreword for a description of this 
project). 

4.1.1 Concept Activity 

In the concept stage, a neural network developer will select an 
architecture for the neural network. Visualization can explain the design 
structure (see Fig. 7-24). Diagrams of the intended neural network 
architecture should be part of the documentation produced by the 
development process. Examples of such diagrams are given throughout 
Chapter 4. 

4.1.2 Requirements Activity 

Defining functional and performance requirement can be difficult for a 
neural network system. The DCS used by the IFCS project had to be 
reverse-engineered from two different sets of code, one in MATLAB and 
one written in C. This process became very confusing until diagrams of the 
DCS were introduced. A model of the DCS was built in MATLAB using 
the knowledge of the structure of the DCS, how the nodes evolved over 
time, and what connections meant. The DCS structure was then plotted 
across time and these plots were assembled into a movie (see Fig. 7-25 on 
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V W 

Figure 7-24. Feed-forward Neural Network Architecture 

the next page). The movie was used at an early project-wide meeting to give 
the project team, who had limited knowledge of neural networks, a basic 
understanding of how the DCS works and adapts. This movie proved to be 
an excellent visual tool to promote understanding and help the project gain 
support. It was very useful in explaining to the participants of the team, 
especially managers, the workings of the DCS and how it would evolve over 
time. Now the project was at a point where the technical people had more 
understanding about the DCS (SOMs in general) and how it worked, and this 
in turn led the group to develop better requirements for the project. 

4.1.3 Design Activity 

Visualization can also play an important role in improving a system 
designer's supervision of neural network adaptation during training. 
Typically, training a neural network is an automated routine: collect training 
data, process training data, set up an automated function for training, check 
for errors, modify the neural network to some prior chosen method, and 
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Figure 7-25. DCS Movie 

repeat. The designer can leave the system unattended and return when it is 
done learning. However, this may be inadequate supervision because the 
developer may not be sure of what the network learned. A visual interface, 
such as the one provided by MATLAB or a custom one created by the 
developer, could improve the supervision of the learning and lead to 
increased confidence in the system. 

Other visualization techniques present the neural network knowledge 
after it has been trained. These techniques are especially useful when 
examining neural networks, such as a SOM, that may change structure by 
growing new nodes as it learns. One example of a technique that applies to 
the DCS, a type of SOM, is representing the trained neural network using a 
Voronoi Diagram^ (see Fig. 7-26). 

The neural network may have actually learned a violation of the expected 
operation and this could be determined by examining a visual representation 
of what has been learned. For this purpose, visual techniques such as a 
Voronoi plot of a trained DCS, Fig. 7-27 on the following page, can be very 
useful. This type of diagram allows for the examination of how the regions 
are forming around the centroids to look for anomalies that may need 
explanation. This technique can be used when the input space is two- or 
three-dimensional, or it used by restricting a larger dimensional space to two 
or three dimensions at a time. 

' Given a set ofn points in the plane, a Voronoi partition is a collection of AZ convex polygons 
such that each polygon contains exactly one point as its centroid and every point in a given 
polygon is closer to its centoid than to any other of the n-1 points. 
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Dynamic Cell Structure (DCS) 

^Representation of each region 

closest representation or output 

For each input find the closest representation 
and it becomes the output 

Weights are the positions of the outputs 
Pruning removes edges when region no longer exists 

Figure 7-26. Voronoi Diagram representing the DCS [Mackall 2002] 
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Figure 7-27. Diagram of a trained DCS 
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Other visual representations of knowledge can be used along with rule 
extraction results (see Chapter 8). The knowledge extracted from the trained 
neural network in the form of rules can then be displayed in plots and 
compared against domain requirements (Chapter 8, Section 2.2). An 
example of such a plot is below in Fig. 7-28. 
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Figure 7-28. Visualization of Rule Antecedents for Trained DCS Network 

4.1.4 Implementation Activity 

MATLAB Neural Network Toolbox and Simulink can be used in the 
implementation activity. The Neural Network Toolbox simplifies the 
creation of customized functions and neural networks. Simulink can be used 
to achieve a detailed visual design for the software component and then the 
design can be transformed into executable representations using the 
autocode generation feature of the software. One feature of MATLAB 
Simulink is the automatic generation of neural network simulation blocks. 
In Fig. 7-29, a three-layer neural network has been converted into Simulink 
blocks indicating its structure. 

4.1.5 Testing Activity 

Testing is another process activity where visualization proves useful. 
Neural networks are often tested as a black box, but there are many visual 
techniques that would allow white box testing of neural network software by 
the developers or V&V practitioners. The capabilities of MATLAB's 
Neural Network Toolbox demonstrate some of these techniques that give 
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Figure 7-29. A Three-Layer Neural Network Converted into Simulink Blocks 

visual examination to the internal workings of the neural networks learning 
process [Mathworks 1998]. For the IPCS project, several plotting scripts 
were developed in MATLAB to look at the various results from the DCS 
(both in simulation and from a C version) to determine if it was working 
correctly. These scripts are still being used by the IPCS project today. 

Visualization capability offered by MATLAB Simulink can enhance the 
integration testing activities. Simulink has the ability to model control 
system applications. For testing activities, a Simulink model that includes 
the neural network control block system model could be used. The Neural 
Network Toolbox includes descriptions, demonstrations, and Simulink 
blocks for popular control applications. 

Other low-fidelity visual tools can include off-the-shelf graphical 
packages or original software developed for a specific purpose. The neural 
network developer or V&V practitioner could use graphical packages or 
create specialized tools specific to the individual situation for visualization 
of various aspects of the neural network operation. Greg Limes'^ a NASA 
Ames Research Center (ARC) subcontractor working on the IPCS project, 
developed one such tool to watch the DCS adapt during training. 

The WVU P-15 Simulator (Pig. 7-30) provides a 3D representation of an 
aircraft that can be used for testing a system that contains a neural network. 
This simulation developed for the IPCS project offers different viewing 
points, external and internal, to the vehicle [Perhinschi 2002]. It presents the 

Limes, Greg. Personal interaction with Brian Taylor on IPCS Project, 2001. 
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traditional pilot instrumentation overlaid on the flying aircraft. Real-time 
MATLAB plots are generated during the flight and are displayed on the 
screen or stored on the hard drive for later analysis. The plots are user-
selected and show various values including sensor data, error tracking of the 
research components, and pilot input. This tracking can help assess the 
performance of the neural network in a simulated environment before it is 
deployed into operation. 

-^ 

Figure 7-30. WVU F-15 Simulator 

4.2 Visualization During the Operation Process 

For an on-line learning neural network (OLNN), one that adapts during 
operation, visualization can provide a means by which to examine the neural 
networks inclination towards a certain direction of adaptation. If the 
direction of adaptation is incorrect, then the designer can remedy the 
situation before the OLNN is deployed or a monitoring device may be able 
to predict incorrect adaptation before it causes failure. An OLNN may, over 
time, begin to exhibit learning patterns that are considered unacceptable. 
Visual tools and techniques can be useful in examining these patterns so the 
neural network can be redesigned or reset to a previous state to prevent 
future occurrences of unacceptable behavior. 

Two tools have been created for the IPCS project for the purpose of 
monitoring the OLNN performance. One is the Sensitivity Tool created by 
Soares [2002] for the NASA Dryden Flight Center and the other is the 
Confidence Tool created by Gupta and Schumann [2004] at NASA Ames 
Research Center. 

The Sensitivity Tool [Soares 2002] applies Lyapunov's 2"̂  Method for 
the stability analysis of neural network-based flight control systems that 
guarantees the boundedness of the tracking error and network weights. The 
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Sensitivity Tool is used to determine whether the neural network-based 
flight control system model signals remain bounded and to exercise the gain 
sensitivity to determine changes to the weights and inversion errors while 
adding white noise to the adaptation algorithm. 

The Tool is a GUI interface (Fig. 7-31 on the next page) to 
MATLAB/Simulink models that allows the user to vary gain and noise 
parameters and generate plots of desired variables. The plots include: 

1. The trajectories of the neural network weights, as they remain bounded 
and converge to the desired value 

2. The trajectories of the pitch, roll, and yaw rates, showing their stability 
and boundedness 

3. The weights of the three channels versus time 
4. Neural network estimation of the inversion errors 
5. Error between the inversion error and the adaptive neural network 

The Sensitivity Tool was modeled in Simulink. The GUI is modeled in 
MATLAB and can be used to plot the results. The tool includes time history 
plots of the weights and cross plotting of variables that show the 
boundedness of the weights and the tracking error for roll, pitch, and yaw 
channels, in addition to the neural network estimation for the inversion 
errors. Additional capability of the tool includes adding gains 
(perturbations) on selected gain parameters. 

Fig. 7-32 shows the Noise Analysis interface (one of the features 
offered). The Noise Analysis introduces a Band-Limited White Noise to the 
error rates in each channel. By double clicking on the Noise option, the user 
can change the noise characteristics, and then plot the result in the presence 
of noise. This demonstrates how the cancellation of inversion errors changes 
with the addition of white noise. Individual random noise based on the 
system clock is input into each channel, two (2) per roll, pitch, and yaw axes 
respectively, with one representing the proportional and integral controller 
each. 

Another tool that can be used to support the operation activity is the 
Confidence Tool created by Gupta and Schumann [2004] at NASA ARC. 
The tool was developed to measure the performance of the neural network 
during operation by calculating a confidence interval (error bar) around the 
neural network's output. The tool can be used during pre-deployment 
verification as well as during operation to monitor the network performance. 
The tool has been implemented in Simulink. 
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Figure 7-31. GUI for the Sensitivity Tool [Soares 2002] 
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Figure 7-32. Additional Plots (Gain and/or Noise Analysis) [Soares 2002] 

Fig. 7-33, Fig. 7-34, and Fig. 7-35 show a graphical representation of the 
tool's output for three simulation runs for three different operating 
conditions. In each graph, the output of the neural network over time is 
shown as a solid line and the dashed lines show the error bars (variance). A 
broad band corresponds to a low confidence value. 
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Figure 7-33. Confidence Tool (a) [Gupta 2004] (©2004 IEEE) 
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Figure 7-34. Confidence Tool (b) [Gupta 2004] (©2004 IEEE) 
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Figure 7-35. Confidence Tool (c) [Gupta 2004] (©2004 IEEE) 

5. SUMMARY 

Visualization can help bridge the cognitive gap by representing 
relationships in the neural and by examining how those relationships evolve. 
Two-dimensional diagrams, three-dimensional plots, or even 3D simulations 
can be used to visually compare structures and adaptation of the neural 
networks. These activities can be used as V&V activities to assess the 
constraints or limitations of the proposed neural network architecture. 

Visualization can aid in both developing and understanding systems 
involving neural networks. Personnel involved in verifying and validating 
such systems may have little or no knowledge of the workings of a neural 
network. Through the use of visualization techniques, such as simple neuron 
models, the MATLAB Neural Network Toolbox and Simulink, or even 3D 
visualizations, the understanding can be increased. 
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Chapter 8 

RULE EXTRACTION AS A FORMAL METHOD 

Marjorie Darrah, Brian J. Taylor 
Institute for Scientific Research, Inc. 

1. INTRODUCTION 

The term formal methods refers to the use of techniques from formal 
logic and discrete math in the specification, design, and construction of 
computer systems and software. These techniques enable the formalization 
of software for development and testing so that it may be verified and 
validated in a more thorough way. When used for testing purposes, formal 
methods can reduce the reliance on human intuition and judgment by 
providing more objective and repeatable tests. Traditional formal methods 
techniques include model checking and theorem proving. 

In the case of deterministic software, model checking can provide 
significant help for designing more efficient and reliable systems. Model 
checking starts from an initial state and repeatedly applies the transition 
relation to search all reachable states for a property violation, while 
remembering explored states to avoid looping [Pecheur 2000]. In theory, 
when this technique is applied to standard deterministic software, a thorough 
check of the state space may be accomplished, though in practice it may take 
a very long time. 

Theorem proving is the use of logical induction over the execution steps 
of the program to prove system requirements. System requirements are 
translated into complex mathematical equations and solved by verification 
experts to prove the system is accurate [Pecheur 2002]. This technique can 
use the full power of mathematical logic to analyze and prove properties of 
any design but will require significant effort and expertise. 

This chapter explores the idea of applying formal methods to adaptive 
neural network software in order to make the verification and validation 
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(V&V) process more objective. Both model checking and theorem proving 
were investigated to decide whether these techniques could be applied to 
adaptive neural networks. 

Model checking seems less applicable when the state space is infinite or 
when the system is non-deterministic or adaptive. In "Verifying Properties 
of Neural Networks" [Rodrigues 2001], the idea of using model checking to 
verify properties of recurrent neural networks is discussed. The system 
presented in the paper, by the author's own conclusion, was clearly 
undecidable and therefore could not be automated. A finite version of the 
system was addressed using local model checking and was implemented, but 
Rodrigues fails to generalize these results to the infinite system. In current 
literature, no other research was found that applied model checking to neural 
networks. It is most likely that because of the infinite state space of the 
neural network, and the adaptive nature of some neural networks, model 
checking does not directly apply. Additionally, much more work in this 
research area will need to be done in order to make it a viable method for the 
V&V of neural networks. 

Likewise, theorem proving in the traditional sense does not seem to be 
applied to adaptive neural networks. Rather than the traditional approach 
where the proof of requirements is done by logical induction over the 
structure of the program, the approaches for the adaptive neural networks 
deal with proving convergence and stability. Lyapunov or stochastic 
methods are commonly used and take the place of theorem proving for 
neural networks. 

Although not specifically identified in the literature as a V&V formal 
method technique, rule extraction fits the basic definition by using 
techniques from formal logic to formalize neural network software so that it 
may be examined more completely. There are many researchers 
investigating the use of rule extraction to acquire knowledge from the neural 
network and put it in a form that a human can understand and examine. In 
the past, rule extraction has been applied to various types of neural networks 
including multilayer perceptron (MLP), local cluster, and radial basis 
function [Andrews 1995; Andrews 2002; McGarry 1999]. This chapter 
examines whether rule extraction can be used as an effective tool for the 
V&V of neural networks and specifically can it be applied to the dynamic 
cell structure (DCS) neural network. 
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2. OVERVIEW OF NEURAL NETWORK RULE 
EXTRACTION TECHNIQUES 

The internal knowledge of a neural network cannot be understood by 
examining the source code of the software. By design, neural networks 
change while training on a data set. After training, some networks are fixed 
while others are allowed to adapt during operation. It is a challenge to 
understand how the network will handle additional input. Testing can give 
some level of confidence but may not provide a satisfactory level in safety-
or mission-critical cases. Other formal methods, such as model checking, do 
not apply in the case of neural networks. 

The method of rule extraction can been used to model the knowledge that 
the neural network has gained while training or adapting. The rules will give 
insight into the workings of the neural network and may also be used to 
check against basic system requirements. The rules extracted are generally 
represented by a set of if-then statements that may be examined by a human. 
If the neural network is fixed after training, then the rules should, with some 
confidence, model the way the neural network will handle other data that is 
processed. If the neural network is a real-time adaptive neural network, then 
rule extraction can be done for one point in time to establish what the system 
looks like at that instance. Repeated application of rule extraction could 
yield an understanding of the progression of the network during adaptation. 

In the current literature pertaining to rule extraction, two main survey 
papers give a good foundation for the study of this topic. The first is from 
the Neurocomputing Research Centre titled "A survey and critique of 
techniques for extracting rules from trained artificial neural networks" 
[Andrews 1995a]. The second survey paper was produced by the same 
group several years later titled "The truth is in there: directions and 
challenges in extracting rules from trained artificial neural networks" [Tickle 
1998]. For a more detailed literature review of rule extraction please refer to 
"Toward Reliable Neural Network Software for The Development of 
Methodologies for the Independent Verification and Validation of Neural 
Networks" [ISR 2002]. 

Rule Formats 
Rule extraction algorithms will generate rules of either conjunctive form 

or subset selection form, commonly referred to as M-of-N rules named for 
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the primary rule extraction that makes use of the form. All rules follow the 
English syntactical if-then propositional form. Conjunctive rules follow the 
format: 

IF (condition 1) AND... AND (contition N) 

THEN RESULT 

Here the RESULT can be of a binary value (TRUE/FALSE or YES/NO), 
a classification value (RED/WHITE/BLUE), or a real number value (0.18). 

The condition can be either discrete (flower is RED, ORANGE or 
YELLOW) or continuous (0.25 < diameter >0.6). The rule extraction 
algorithm will search through the structure of the network, and/or the 
contents of a network's training data, and narrow down values across each 
input looking for the antecedents (conditions) that make up the rules. 

Subset rules, or M-of-N rules, follow the format: 

IF (M of the following N antecedents are TRUE) 

THEN RESULT 

Cravin and Shavlik explain that the M-of-N rule format provide more 
concise rule sets in contrast to the potentially lengthy conjunctive rule 
format [Craven 1994]. This can be especially true when a network uses 
several input parameters. 

Rule Extraction Techniques 
Andrews [1995a] identifies three categories for rule extraction 

procedures: decompositional, pedagogical, and eclectic. Each approach may 
generate Boolean or fuzzy-logic rules. There are several dozen different rule 
extraction techniques; many are no more than a succeeding version of a 
previous technique. The techniques that appear prominently in the literature 
will be discussed below. Other techniques, such as fuzzy logic and Boolean 
rule extraction, discussed in Andrews' survey paper, do not seem to be 
widely used or are not well documented, as judged by the lack of 
information in the literature. 

Decompositional 
Decompositional rule extraction involves the extraction of rules from a 

network in a neuron-by-neuron series of steps. This process can be tedious 
and result in large and complex descriptions. The drawbacks to 
decompositional extractions are time and computational limitations. One 
advantage of decompositional techniques is that they do seem to offer the 
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prospect of generating a complete set of rules for the neural network. These 
rules are also of a binary form; the outputs of the neurons are mapped into a 
yes/no condition that Andrews refers to as a rule consequent [Andrews 
1995a]. 

KT and SUBSET are two well-known subset algorithms within 
decompositional rule extraction. Fu [1994] developed the KT algorithm that 
is able to handle neural networks with a smooth activation function, such as 
the back-propagation network with a sigmoid function, where the activation 
function is bounded in the region of [0, 1]. The SUBSET algorithm is an 
extension of the KT algorithm that was suggested by Towell and Shavlik 
[1993]. The SUBSET routine specifies a neural network where the output of 
each neuron in the network is either close to zero or close to one, as opposed 
to existing somewhere between the bounds of zero and one. This changes 
the importance of links between neurons in that the values that propagate on 
a link are close to the value of that link's weights or zero. 

Pedagogical 
Pedagogical rule extraction is the extraction of a network description by 

treating the entire network as a black box. In this approach, inputs and 
outputs are matched to each other. The decompositional approaches can 
produce intermediary rules that are defined for internal connections of a 
network, possibly between the input layer and the first hidden layer. 
Pedagogical approaches usually do not result in these intermediary terms. 
Pedagogical approaches can be faster than the decompositional, but they are 
somewhat less likely to accurately capture all of the valid rules describing a 
network's contents. 

Thrun [1995] developed Validity Interval Analysis (VI-Analysis or VIA), 
the core technique within the pedagogical approach. The key idea in VIA is 
to attach intervals to the activation range of each input parameter looking for 
the network's activations that lie within these intervals. VIA checks whether 
or not a set of intervals is consistent, i.e. whether there exists a set of 
network activations inside the validity intervals. It does this by iteratively 
refining the validity intervals, excluding activations that are provably 
inconsistent with other intervals. The end result is a set of validity intervals 
for each input, a hypercube across all of the input dimensions. 

Eclectic 
The eclectic approach is merely the use of those techniques that 

incorporate some of a decompositional approach with some of a pedagogical 
approach or those techniques designed in such a way that they can be either 
decompositional or pedagogical. The Rule-Extraction-As-Learning (REAL) 
method, for example, is designed such that it can use either technique. 
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In a paper describing the REAL technique, Cravin and Shavlik discuss a 
way of extracting rules through supervised learning and network querying as 
opposed to the common search-based techniques from the previous sections 
[Craven 1994]. (They refer to the search methods as Rule-extraction-as-
search approaches.) Many of the search algorithms try to find rules that 
explain the activations of hidden layer and output layer neurons in the 
networks. The REAL technique instead will learn from the training 
examples and query a network to determine if the specific instances from the 
training set are covered by the target output result. 

2*1 Developing Rule Extraction Techniques for V&V of 
a Safety-Critical System 

This section details the approach taken to determine whether rule 
extraction will be a viable tool for the V&V of the DCS neural network used 
in intelligent flight control (IPC). The Intelligent Flight Control System 
(IPCS) project is working towards developing a real-time adaptable flight 
control system utilizing neural networks. This project is a collaborative 
effort among the NASA Dryden Flight Research Center, the NASA Ames 
Research Center (ARC), Boeing Phantom Works, the Institute for Scientific 
Research, Inc. (ISR), and West Virginia University (WVU). The first 
generation (GENl) flight control concept was designed to identify aircraft 
stability and control characteristics using neural networks and to use this 
information to optimize aircraft performance in both normal and simulated 
failure conditions. 

Developers of the DCS neural network have been cautious about 
expanding their use into safety- and mission-critical domains due to the 
complexifies and uncertainties associated with these complex, adaptive 
software systems. Since the DCS neural network and other adaptive neural 
networks are beginning to be used within high-assurance systems, NASA 
has encouraged research in the area of the V&V of neural networks to 
answer the question: How can we be sure that any system that includes 
neural network technology is going to behave in a known, consistent, and 
correct manner? 

2.1.1 Overview of IFCS Use of the DCS Neural Network 

The IFCS provides an example of neural networks used in a safety-
critical application. Two types of neural networks are designed into the 
IFCS GENl scheme. A pre-trained, non-adaptive neural network 
component provides a baseline approximation of stability and control 
derivatives for the aircraft. The second neural network is an online adaptive 



Rule Extraction as a Formal Method 205 

network that learns and adapts during flight to account for aerodynamic 
changes, such as ones due to actuator failures. 

In the fall of 2003, the IPCS GENl system completed successful testing 
in flight on the NASA F-15 Advanced Control Technology for Integrated 
Vehicles aircraft. This aircraft has been highly modified from a standard F-
15 configuration to include canard control surfaces, thrust vectoring nozzles, 
and a digital fly-by-wire flight control system to enable the simulation of 
different actuator failures during flight. 

The online adaptive neural network, the DCS, used in the IPCS GENl 
system is of special concern with respect to V&V. The DCS is a member of 
a group of neural networks known as self-organizing maps. The DCS 
algorithm, implemented in the GENl system by NASA ARC [Jorgensen 
1997], was originally developed by Bruske [1994] and is a derivative of 
work by Fritzke [1994] combined with competitive Hebbian learning by 
Martinez [1993]. These neural networks are designed as topology 
representing networks whose roles are to learn the topology of an input 
space with perfect preservation. 

The DCS neural network learns the fiinction that describes a map of the 
input space, represented as Voronoi regions. The neurons within the neural 
network represent the reference vector (centroid) for each of the Voronoi 
regions. The connections between the neurons, C//, are then part of the 
Delaunay triangulation connecting neighboring Voronoi regions through 
their reference vectors. 

This reference vector is known as the best matching unit (BMU). Given 
an input, v, the BMU is the neuron whose weights, w, are closest to v. Along 
with the BMU, the second BMU (SEC) is found using the Delaunay 
triangulation and nearby neurons are adjusted within the BMU neighborhood 
(with nearby neuron defined as the neurons connected to the BMU through 
the triangulation). 

The DCS algorithm consists of two learning rules, Hebbian and 
Kohonen. Hebbian learning updates Ctj (Eq. 8.3) between neurons / andy to 
reflect the topology (triangulation) of the input space where the connection 
is a perfect fit of 1, if / andy are the BMU and SEC. 

1 / G [BMU, SECl j e [BMU, SEC] 

a • C:: a • C:: > 6 
q / = i ^ ^ (8.3) 

'^ ' 0 acij<e 
0 i = j 
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The forgetting constant, a, is included to produce a weakening between / 
andy if they are not currently the closest to the stimulus, and ^is the edge 
threshold, a minimum acceptable connection strength in order for the 
connection to be considered valid. Kohonen learning is used to adjust the 
weight vectors, w, of the neurons. The change in the weight vectors is 
represented by Eq. 8.4 and Eq. 8.5. 

^^BMU = ^BMU (V - ^BMU ) (8-4) 

Awj=e^(v-wj) (8.5) 

where S^^^ is the BMU weight adjustment parameter and Sj^ is the 
weight adjustment applied to the neighborhood of the BMU. 

These two learning rules allow the DCS neural network to change its 
structure. The ability to add new neurons into the network as it grows gives 
the DCS neural network the potential to evolve into many different 
configurations. This adaptive nature can open up the possibility of sub-
optimal or even erroneous solutions. 

2.1.2 DCS Rule Extraction Algorithm 

In order to determine whether rule extraction was a viable approach for 
the V&V of the DCS neural network used in the IPCS, an algorithm that 
applied to the DCS had to be found or developed. Several rule extraction 
techniques had been developed for neural networks similar to the DCS. 
RULEX is a tool offered by Robert Andrews and Shlomo Geva [1995b, 
2002] that will extract rules from constrained error back-propagation 
(CEBP), MLP, and local cluster neural networks. Andrews and Geva 
provide MATLAB files that implement RULEX. 

Another algorithm that seemed applicable to the DCS was the LREX rule 
extraction algorithm developed by McGarry, Wermter, and Macintyre 
[2001], School of Computing, Engineering, and Technology, University of 
Sunderland, England. These algorithms are used to extract rules from radial 
basis function (RBF) neural networks. 

After examining both the RULEX and LREX techniques closely it was 
determined that neither technique could be used directly to extract rules from 
the DCS neural network in the IPCS. The literature reveals many techniques 
and tools available for rule extraction, although most of these techniques and 
tools are neural network specific. There is not one general rule extraction 
technique that can be applied to every neural network; rather there must be a 
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collection of techniques to handle the different types. Therefore a new 
algorithm for extracting rules from the DCS was developed by ISR. 

The algorithm developed for extracting rules from the DCS is a 
modification of the LREX algorithm by McGarry [1999] that was used to 
extract rules from a RBF neural network. After the DCS has been trained, 
the weights are used as inputs to the algorithm. During the training, the 
BMU corresponding to each data point is recorded and also used as input to 
the algorithm. The training data is divided into regions based on the BMU. 
Then for each region, x lower is the smallest value of the independent variable 
that has a particular BMU and x upper is the largest value of that independent 
variable that has that same particular BMU. These two numbers form 
bounds for the intervals in the antecedent of the rule. (Example: variable >= 
X lower AND <= X upper) Au interval is determined for each of the independent 
variables and the statements are connected by AND to form the full 
antecedent. When the DCS was used as a classifier with the Iris data, the 
conclusion of the if-then statement was categorical. In this case the category 
associated with the BMU was reported in the rule as the conclusion. When 
the DCS was used to learn a function and the dependent variable was 
continuous, then the conclusion was stated the same way the antecedent was 
stated, intervals connected with ANDs. The algorithm used for the rule 
extraction is in Fig. 8-1. The rules will be explained in Sections 2.1.4 and 
2.1.5. 

Input: 
Weights of the DCS (centers of Voronoi region) 
Best matching unit for each input 
Ouput: 
One rule for each cell of the DCS 
Procedure: 
Train DCS on data set 
Record BMU for each input 
Collect all inputs with common BMU to form cell 
For each weight {w^ 

For each independent variable 
^\o^vcr ~ "^i<^{^ I ^ has BMU = w.) 
'̂ uppcr"" n^ax{x|x has BMU = w j 

Build rule by: 

Join antecedent statements with 
Dependent variable = category 

O R 
Dependent variable in [y,̂ ^̂ .̂ ,̂ y ^^Ji 
Join conclusion statements with AND 

Write Rule 

Figure 8-1. DCS Rule Extraction Algorithm 
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2.1.3 Implementation of the DCS Rule Extraction Algorithm 

In order to test the DCS rule extraction algorithm, first a generic 
implementation of the DCS neural network was developed in MATLAB. 
This implementation has a GUI that allows different sets to be loaded for the 
purpose of training the neural network. As reflected in Fig. 8-2, the 
command launchDCS brings up the window that, through a menu system, 
allows the user to load a data file, classify the variables in the file as 
independent or dependent, scale the data if necessary, configure the DCS, 
and then train the DCS. 

I DCS Configuration 

Data SDB DCS htelp 
l ln jx l 

F Step 1: Loaded Data 

F Step 2: Data Classified 

F Step 3: Configure 

F DCS Configured (Default) 

F SDB Configured (Default) 

F Scaling Set (Default) 

F Ready to Train 

#I5R 
Figure 8-2. DCS GUI 

After the DCS training was complete, then the rule extraction scripts 
were called from the MATLAB main window using the command results = 
extract_rules_DCS(dcs, data). Since the independent and dependent 
variable names are used in the rules, each of the rule extraction source code 
files is specific to the training data set. 
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2.1.4 Testing Rule Extraction Algorithm on Benchmarking Data 

To test the rule extraction algorithms, the DCS was trained on a 
benchmark data set available to developers for testing purposes. The data 
set chosen for this benchmarking exercise was the Iris data, available 
through the University of California at Irvine, because it is a common data 
set used by authors of other rule extraction techniques. The Iris plant 
database is from original work of Fisher [1936] and contains three classes of 
Iris plants (IrisSetosa, IrisVirginica, and IrisVersicolor). There are four 
independent variables used to predict classification type (sepallength, 
sepalwidth, petallength, and pedalwidth). One of the Iris classes is 
linearly separable from the other two, but the other two are not linearly 
separable from each other. 

A five-fold cross validation approach was used for the testing of the Iris 
data. This meant that the Iris data was divided into five equal parts, {Si, S2, 
S3, S4, S5}, of which four parts were used for training and a fifth part is used 
for testing. The Iris data contains 150 data points; therefore, the data was 
partitioned into five groups of 30 random points. 

After training on the Iris data, the DCS should have clustered the input 
data into different classifications representing the different Iris types: Setosa, 
Virginica, or Versicolor. To capture what the DCS learned, the rule 
extraction algorithm described in Section 2.1.2 was applied to the trained 
DCS. The output was a set of rules in the form of if-then statements. These 
rules in Fig. 8-3 represent one such set of rules that attempts to capture the 
Voronoi regions that the DCS formed to cluster the Iris data. 

Since the extracted rules are a representation of the DCS, they should 
classify data in the same way that the DCS classifies data. To test the rules 
agreement with the DCS, the rules were implemented in MATLAB and 
applied to the S5 subset partition of Iris data (the test set). The results from 
the extracted rules were then compared to the results from the same data 
classified by the DCS. 

Five iterations of this procedure were completed to ensure that each 
subset was used as test data. This meant that iteration one used subsets {Si, 
S2, S3, S4} to train and S5 to test, iteradon two used partitions {Si, S2, S3, S5} 
to train and S4 to test, and so on. When compared to the DCS, the extracted 
rules had an overall agreement of 82% in classifying the Iris data. Results 
are based on setting the minimum error for the network at 1.5. The 
minimum error controls the growth of the network. The network will 
continue to grow nodes until the minimum error is satisfied or the network 
size reaches a preset limit for number of nodes. 
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RULES FOR CELL! 
IF (SL >-5.6 AND <=7.9) AND 
(SW >=2.2 AND <=3.8) AND 
(PL >=4.8 AND <=6.9) AND 
(PW>=1.4AND<=2.5) 
THEN...Virginica 

RULES FOR CELL2 
IF (SL >=4.3 AND <=5.8) AND 
(SW >-2.3 AND <=4.4) AND 
(PL>=L1 AND<=L9)AND 
(PW>=0.1 AND<=0.6) 
THEN...Setosa 

RULES FOR CELL3 
IF (SL >=4.9 AND <=7) AND 
(SW >=2 AND <=3.3) AND 
(PL >=3 AND <=5) AND 
(PW>=1 AND<=L8) 
THEN...VersicoIor 

Figure 8-3. Rules Extracted from Iris Data 

2.1.5 Application of Rule Extraction Algorithm to DCS Trained on 
Flight Data 

After a benchmark example had been executed and evaluated, the next 
step was to apply the rule extraction algorithm to the DCS trained on IPCS 
flight data. With the flight data, the DCS is used for function approximation 
(DCS was used for classification with the Iris data). The flight data used 
was obtained from an F-15 Flight Simulator developed at WVU for use in 
testing the IPCS GENl scheme. This data set contains seven independent 
variables and 26 dependent variables. These variables were introduced to 
one of five different DCS networks, one network for each of the 
aerodynamic derivative coefficients: Cz, Cm, CI, Cn, and Cy. Each network 
learns the derivatives associated with a different coefficient. For example, 
Cz learns the stability and control derivatives associated with pitching 
moments due to normal force and uses the inputs of mach, altitude, alpha, 
and beta as the independent variables and cza, czdc, and czds as the 
dependent variables. After training the DCS on these variables the rules 
extracted take on the form seen in Fig. 8-4. The data in this case is all 
continuous data, so the rules give both antecedent and conclusion in the form 
of intervals. 
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RULES FOR CELLl 
IF (mach >=0.78799 AND <=0.78945) AND 
(altitude >=19860.484 AND <=19889.6526)AND 
(alpha >=1.7003 AND <=1.8842) AND 
(beta>=-0.029893 AND <=0.015156) AND 
THEN (cza >=0.015062 AND <=0.019333) AND 
(czdc >-0.22274 AND <=0.2287) AND 
(czds >=0 AND <=0) 

RULES FOR CELL2 
IF (mach >=0.78455 AND <=0.8178) AND 
(altitude >=19205.5546 AND <=19999.3379)AND 
(alpha >=1.2545 AND <=1.7887) AND 
(beta>=-0.20803 AND <=0.64913) AND 
THEN (cza >=-0.076577 AND <=-0.002783) AND 
(czdc >=0.22355 AND <=0.22448) AND 
(czds >=0 AND <=0) 

RULES FOR CELLS 
IF (mach >-0.73926 AND <=0.78946) AND 
(altitude >=19860.1718 AND <=21233.6014)AND 
(alpha >=1.8854 AND <=2.4619) AND 
(beta >=-0.079409 AND <=0.020729) AND 
THEN (cza >=0.001184 AND <-0.015041) AND 
(czdc >=0.20335 AND <=0.22271) AND 
(czds >=0 AND <=0) 

Figure 8-4. Rules from the Cz Network 

As discussed above, in practice there are actually five different DCS 
implementations in the IPCS GENl system: Cz network, Cm network, Cy 
network, CI network, and Cn network. Each of the networks has an 
individual variable list shown in Table 8-1. Each set of flight data contains 
all variables needed to train the five different networks. The flight data 
dcs_in1 was used to train the different networks and rules were extracted. 

When trained on the Iris data, the DCS was used as a classifier, and thus, 
computing the agreement of the rules with the DCS for the Iris data was 
quite simple. With the flight data, the DCS is being used to approximate a 
fiinction; as a result, determining the accuracy of the rules in this case is not 
as straight forward. The rules are evaluated by examining the domain 
coverage and the actual difference between the rule boundaries and the 
Voronoi region boundaries. 
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Table 8-1. DCS Networks Used for IPCS 
Name of Network 
Cz 
Cm 
Cy 

CI 

Cn 

Independent Variables 
mach, altitude, alpha, beta 
mach, altitude, alpha, beta 
mach, altitude, alpha, beta, 
dstbd, drudd, daild 
mach, altitude, alpha, beta. 
dstbd, drudd, daild 
mach, altitude, alpha, beta, 
dstbd, drudd, daild 

Dependent Variables 
cza, czdc,czds 
cma, cmdc, cmds, cmq 
cyb, cydt, cyddc, cydr, cya 

clb, cldt, clddc, cldr, clda. 
clp, clr 
cnb, cndt, cnddc, cndr, cnda. 
cnp,cnr 

Methods for refining the rule extraction algorithm and developing a 
deterministic rule set for the DCS flight data application were developed 
through funding provided through a NASA Ames STTR project titled A 
Formal Method for Verification and Validation of Neural Network High 
Assurance Systems. The original algorithm discussed in Section 2.1.2 is an 
uncomplicated way to capture the Voronoi regions that are created by the 
DCS. The refinement of the algorithm, discussed in the next section, 
generates expressions that completely capture the n-dimensional convex 
hulls that make up these Voronoi regions. These expressions are used as the 
antecedent for the new rules and a deterministic consequent was developed. 
The problem in refining the rules in this way is that the explicit description 
of Voronoi regions becomes overly complicated and can be less 
understandable than the information given by the initial rule type. 

There is a definite tradeoff for rule sets between accuracy and 
understandability. A more simplistic, less accurate rule set may be useful to 
lend human understandability to the knowledge of the neural network. A 
more deterministic and accurate rule set may provide other methods of 
V&V, such as checking the rule set for inconsistencies in a model checker or 
theorem prover. Whatever format is used, it is important to ensure that any 
rules extracted are accurate, useful, and understandable. 

2.1.6 Refining the Rule Extraction Algorithm 

A new algorithm was developed to generate deterministic rules that 
utilize the structure of the DCS knowledge by considering the Voronoi 
regions that partition the input space. 

As explained previously, the DCS partitions the input space into Voronoi 
regions. These regions are convex polygons in two dimensions and convex 
n-dimensional polyhedra in n dimensions. The original rule extraction 
algorithm did not capture the entire polygon or polyhedron region with the 
rules. The original algorithm used a "box" to represent that region and the 
rules represent the box. (See Fig. 8-5) 
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Figure 8-5. Original Rule Coverage 

The new rule extraction algorithm was developed to completely capture 
the polygonal regions of the input space that represent the structure of the 
trained DCS. The previous rule format was non-deterministic and although 
understandable, could not be used as input to custom-off-the-shelf (COTS) 
tools or implemented. The new rule format is: 

IF input e region 1 (input satisfies a set of constraints) 

THEN output = multivariable linear expression 
(8.6) 

Below is an example of the new deterministic rules for a two-
dimensional data set. 

IF ( 6 * x + 0 * y > = 4 8 ) A N D ( 2 * x + 2 * y > = 3 2 ) 

AND (-1 * X + 4 * y >= 8.5) AND (-3 * x + 2 * y >= - 25.5) 

A N D ( 4 * x - 2 * y > = 1 6 ) A N D ( - 3 * x + 2 * y > = - 2 3 . 5 ) 

AND(-5*x + 0*y>=-57 .5 ) 

THEN z = 0.75 * x + 0.75 * y - 7.5 

ENDIF 

(8.7) 
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These rules are specifically designed for the DCS structure implemented 
by the IPCS project. The first part of the rule (after the IF) gives a set of 
constraints that defines a region of the input space based on a possible BMU 
and second best matching unit (SEC) pair. The subsequent parts (after the 
THEN) give the DCS output based on this region. For the IFCS DCS 
implementation, the output is determined based on the BMU and SEC pair. 

The algorithm for the deterministic rule extraction technique for the DCS 
is shown in Fig 8-6. This algorithm was developed because no such 
technique existed for self-organizing maps. However, a similar rule 
extraction technique does exist for the feed-forward neural network. 
Techniques developed by Setiono [2002] and outlined in his paper 
"Extraction of rules from artificial neural networks for regression" align with 
the technique created for the DCS. 

Inputs: 

Output: 

P = Set of all weights (centroids of the Voronoi regions) 
A = Adjacency Matrix 

R = Set of rules that describe a partition of the input 
space with associated outputs 

Procedure: 
Use P to define a Voronoi diagram that partitions the 

input space. 
Use A to determine neighboring regions in the Voronoi 

diagram to find BMU and SEC pairs. 

For each p « P (centroid of Voronoi region and BMU) 
Calculate Voronoi region boundaries. 
For each q € P - {p} such that v is a neighbor of w 
(centroid of neighboring region and SEC) 

Determine boundaries that divide the region 
with centroid w into subregions. 

Determine antecedent based on boundaries 
defined by p and q. 

Determine consequent equation based on DCS 
output determined by p and q. 

Write rule. 

Figure 8-6. Detenninistic Rule Extraction Algorithm 

To test the accuracy, deterministic rules were generated for three 
different data sets. The rule output and the neural network output had 100% 
agreement. The rules are constructed to completely cover the input space 
and to use the DCS recall function as the output based on the region, 
therefore these rule have complete agreement with the neural network. Fig. 
8-7 shows a two-dimensional example of how the rules partition the data 
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based on BMU and SEC. The solid lines, in the figure, indicate the original 
Voronoi regions that divide the plane based on the BMU. The dotted lines 
show how the original regions are subdivided to account for the SEC. The 
lines that define the subregions form the rule antecedent. Note that the entire 
input space is covered, with each of the subregions representing one rule. 

•§tmm^ 

Figure 8-7. Deterministic Rule Coverage 

2.2 Using Extracted Rules for V&V of DCS 

One goal of this research was to demonstrate that the rules extracted from 
the DCS neural network could be used to assist in the V&V of the neural 
network used in a safety-critical application. The rules are viewed as a 
descriptive representation of how the DCS handles data. This representation 
provides the inner knowledge of the neural network that can be used to help 
understand whether the neural network is functioning as expected. 

After extracting the rules from the IPCS neural networks, the rules were 
compared against the two documents provided by the IPCS project team, the 
Software and Interface Requirements Document (SIRS), IPC-SIRS-P004-
UNCLASS-051501 [ISR 2001a] and the Interface Control Document (ICD), 
IPC-ICD-P008-UNCLASS-011501 [ISR 2001b]. The usefulness in 
requirements traceability and the overall usefulness of rule extraction to the 
IV&V practitioners understanding were assessed. 
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2.2.1 Comparison of Rules Against Requirements 

The first way the extracted rules can be used is as an assessment against 
the expected ranges of the inputs and outputs of the DCS system. The SIRS 
for the IPCS project identifies the following requirements for the DCS 
network: 

Requirement 3.2.4.3 [04] in Fig. 8-8 refers back to an earlier requirement 
within the document that was levied against the pre-trained neural network. 
This requirement is displayed as Table 2-2 in Fig. 8-8. The purpose of this 
table is to clearly identify the IFCS flight envelope and the allowed ranges 
for the inputs that define the envelope. 

A V&V practitioner can look at these ranges in the table and compare 
them against the ranges in the antecedents of the rules extracted from the 
DCS. This verification activity proves to be worthwhile since there are 
certain situations that may lead to the DCS network rule antecedents that 
violate the input range limits. One possibility could be the improper use of a 
DCS initialization point. If the DCS networks start with no knowledge and 
are initialized at an improper starting point (such as the first two neurons 
within DCS are initialized to values of zero, something not unreasonable), 
then these initial values may affect the Voronoi regions within the DCS in an 
adverse way causing them to allow values outside the flight envelope. 
Looking at the antecedents of the extracted rules may identify this situation. 

Another way the rules may be used is in the analysis of specific input 
variables. For example, mach and altitude are inputs that do not cross the 
zero value within their acceptable ranges. One may want to check to ensure 
that the extracted rules align with the expected ranges, and in situations 
where the zero value is within a rule, perhaps identify this as an area of 
special interest that requires additional analysis. 

The rules may have an additional use in examining different modes of 
operation. The purpose of the IFCS is to induce safe failures and allow the 
system to adapt to accommodate these failures. Some of the failures may 
induce learning that extends beyond the expected ranges of the inputs. (This 
will be especially true for output ranges that will be discussed a little later.) 
Retaining prior learning, especially after a failure occurs, may be something 
the IFCS project team will want to investigate. The rules may identify 
Voronoi regions that violate the expected input ranges and point to an area 
of the input space that will require further simulation and understanding 
before the project proceeds. 
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3.2.4.3 [04] Inputs 
The OLNN inputsshaHOl] process the following 8 sensor inputs: mach, altitude, alpha, beta, stabilator 
deflection, rudder deflection, aileron deflection, and canard deflection. 

The OLNN software shaH02] conform to the units as specified in the ICD. The inputs of beta and rudder 
deflection shaHOS] be absolute magnitudes only. 

The sensor inputs into the OLNNshaH04] undergo the same input pre-processing used for the BLNN as 
described in 3.2.2.1 and Table 2 -2. 

Additional OLNN inputs shaHOS] include the derivative deltas, which are the differences between each 
stability and control derivative output from the PID and output from the BLNN. These derivative deltas are 
described in Section 3.2.3.4 PID Outputs. 

The specific derivative deltas are as follows: 

AC^ AC .̂ Aa^. AC;„̂ ^ AC,„̂ . AC,„̂ . AĈ ^ 

AC, AC, AC, AC, AC, AC, AC, AC, AQ AQ AC, AQ 

AC„ AC„ AC„ AC„ AC„ AC„ AC„ 

Table 2-2. BLNN Input Range Limits 
Input ^ 

__ -^-Signal ;^ 
(dimensions) 
Mach (Mach) 
Altitude (feet) 

Alpha (degrees) 

Beta (degrees) 
Stabilator 

Deflection(degrees) 
Rudder 

Deflection(degrees) 
Aileron 

Deflection(degrees) 
Canard 

Deflection(degrees) 

_, Minimum 
: " Value ;^ 

0.20 
5000.00 

-4.00 

-10.00 
-30.00 

-30.00 

-40.00 

-35.00 

-. Maximnm - :: 1 
= - - V a l u e . =>:: :i: -

1.60 
50000.00 

Function of Flight Envelope-=i ^ - j 

20.00 

(if Mach <= 0.85 OR 
Altitude >= 25000.00) 

14.00 1 

(ifMach> 0.85 AND 
Altitude < 25000.00) 

10.00 1 
15.00 

30.00 

40.00 

5.00 

Figure 8-8. Requirements for the OLNN Input 

Just as with the inputs, the SIRS also identified a range of expected 
outputs. These requirements were spread across the Parameter Identification 
(PID) and on-line learning neural network (OLNN), the DCS, and sections 
of the SIRS and the ICD. Some of the requirements that are levied against 
the OLNN appear below in Fig. 8-9. 
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2.2.1.1 Output 

The OLNN attempts to remember the derivative deltas between the PID and the BLNN. The OLNN then 
produces an output that is the learning of these derivative deltas. These outputs are called the derivative 
corrections and there is a deriva tive correction for each of the 26 stability and control derivatives. The 
specific "derivative corrections" are as follows: 

AC, AC, AC, AC„ AC^ AC, AC, 
^a "^Sc '-Ss ^^^a ^^S^ ^^^S^ ^^hj 

AC, AC, AC, AC, AC, AC AC AC 

AC„ AC„ AC„ AC„ AC„ AC, AC, 

AC/ ^^1, AC, AC, 

These derivative corrections shaHOl] be computed to a minimum precision of six places after the decimal 
point. 

The OLNNdoes not provide any outputs to the SOFFT controller when the PID and OLNN are executed in 
the passive open-loop mode. For this Build, the outputs are only used for internal recording and then for 
later study and analysis. The OLNN shaH02] provide outputs to the Instrumentation bus as described in 
IPC -ICD -FXXX -UNCLASS-011501. 

The outputs generated by the OLNN will include the processed inputs that the OLNN makes use of in its 
computations. 

Figure 8-9. Requirements for the OLNN Output 

The ICD contains the output description for all 26 stability and control 
derivatives, which includes the expected minimum and maximum values. 
The extracted rules from the DCS can be compared against the description of 
these derivatives. This could identify if the Voronoi regions of the DCS 
allowed for outputs that can violate those expected ranges. 

2.2.2 Comparison of Rules Against Design Considerations 

One of the most important steps of V&V is the traceability of 
requirements throughout the lifecycle processes. Requirements traceability 
can be a difficult task with a neural network because of their adaptive 
capabilities. Another factor that can make traceablility difficult is the fact 
that neural network requirements are often not clearly or concisely written, 
even though the overall goal for the system is generally well understood. 
The extracted rules represent the learning of the neural network, thus the 
rules could be used to determine if the network is meeting specific implied 
requirements. 

For example, one requirement for the network used in the IPCS that is 
hard to explicitly state is "the network will provide smooth transitions of 
derivatives between regions within the flight envelope." If the neural 
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network has been pre-trained to learn the different regions within the flight 
envelope, then the network's knowledge near the boundaries should be 
examined. This can be achieved by examining the extracted rules. If system 
designers are not satisfied with the network performance, then it is possible 
the network may require further training or modification. Either way, the 
examination of the extracted rules can help to determine the integrity of the 
neural network. 

Fig. 8-10 depicts the IFCS flight envelope used for GENl. The flight 
envelope can be broken into regions (a process known as gain scheduling) 
where a set of linear equations is used to approximate the behavior of that 
region. Due to the non-linearities of the aerodynamics throughout the entire 
flight envelope, several regions are often used. 

Figure 8-10. IFCS Flight Envelope 

Fig. 8-11 is a graph that shows the mach-altitude components of the 
extracted rules for this same data set. Fig. 8-12 shows an example of the 
rules extracted from the DCS CI network after training on a single set of 
flight data. The plot was constructed just using mach and altitude to see if 
the ranges of the rules may have any relationship to the use of gain 
scheduling or can visually tell us anything important. 
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2.15 

2.1 

2.05 

MO* Rule Boundaries for CI 

1.95 

— Cell 
— Cel2 

Cel3 

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 

Figure 8-11. Plot of Mach vs. Altitude CI Network Extracted Rules 

There are a few observations that can be made that provide insight into 
the Voronoi regions and the overall neural network performance. For 
example, the network was trained such that it only developed three cells. 
This is a result of using a small data set to train the neural network and using 
certain settings to control how the DCS learned 

From experience with the DCS network and the method used to extract 
the Voronoi regions (the cells), it can be deduced that the cells were 
developed across time. This means that cell 1 developed first, followed by 
cell 2 then cell 3. Cells 2 and 3 appear as subsets of cell 1. It also seems 
that the cells are moving from higher altitude to lower altitude and from 
lower mach to higher mach as the last two cells appear in the lower right 
hand side. 

The V&V practitioner may be able to gain insights from these 
observations. With the limited data, he or she may be able to identify the 
type of flight maneuver used to train the DCS. For example, if the data is 
decreasing for altitude and increasing for mach, this may indicate the plane 
is diving. This might explain the placement of the cells representing the data 
extracted from the DCS after learning on this maneuver. 

The practitioner may also be able to assess the size of the regions. For 
the problem at hand, the first cell may be too large and the other cells should 



Rule Extraction as a Formal Method 221 

RULES FOR CELL! 
IF (mach >-0.73926 AND <=0.8178) AND 
(altitude >= 19236.9846 AND <=21233.6014)AND 
(alpha >= 1.3343 AND <=2.4619) AND 
(beta >=-0.079409 AND <=0.057813) AND 
(dstbd >=-0.079409 AND <=0.057813) AND 
(drudd >=-0.079409 AND <=0.057813) AND 
(dalid >=-0.079409 AND <=0.057813) 
THEN (clb >=2.7495 AND <=2.8781) AND 
(cldt >=-0.052976 AND <-0.077512) AND 
(ciddc >=-4.82l2 AND <--3.3811) AND 
(cldr >=-4.8212 AND <=-3.38I I) AND 
(clda>=-4.82i2 AND <=-3.3811) 
(clp >=-4.82i2 AND <=-3.38n) 
(clr>=-4.8212 AND <-.3.3811) 

RULES FOR CELL2 
IF (mach >=0.78455 AND <=0.8I763) AND 
(altitude >=19205.5546 AND <= 19998.39II) AND 
(alpha >= 1.2545 AND <=1.6976) AND 
(beta >=-0.20803 AND <=0.64913) AND 
(dstbd >=-0.20803 AND <=0.64913) AND 
(drudd >=-O.208O3 AND <=0.64913) AND 
(dalid >=-0.20803 AND <=0.64913) 
THEN (clb >=2.8005 AND <=2.898) AND 
(cldt >=-0.24914 AND <=0.658I2) AND 
(clddc >=-3.8321 AND <=-3.278) AND 
(cldr >=-3.8321 AND <=-3.278) AND 
(clda>=-3.8321 AND<=-3.278) 
(clp>-=-3.8321 AND<=-3.278) 
(clr>=-3.8321 AND <=-3.278) 

RULES FOR CELL3 
IF (mach >=0.78235 AND <=0.8I78) AND 
(ahitude >=19205.6047 AND <=20032.147) AND 
(alpha >=1.4345 AND <=2.0295) AND 
(beta >=-0.065293 AND <=0.2066) AND 
(dstbd >=-0.065293 AND <=0.2066) AND 
(drudd >=-0.065293 AND <=0.2066) AND 
(dalid >=-0.065293 AND <=0.2066) 
THEN (clb >=2.7964 AND <=2.8791) AND 
(cldt >=-0.05l466 AND <=0.I9309) AND 
(clddc >=-4.2774 AND <=-3.5067) AND 
(cldr >=-4.2774 AND <=-3.5067) AND 
(cida >=-4.2774 AND <=-3.5067) 
(clp >=-4.2774 AND <=-3.5067) 
(cir >=-4.2774 AND <=-3.5067) 

Figure 8-12. Extract Rules: CI Network Trained on d c s i n l 
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not be subset of the first. The fact that this figure is only drawn across two 
of the input dimensions can distort the analysis and perhaps a 3D drawing, or 
the data spread across multiple plots, may be better able to highlight 
differences in the cell. 

Since the initial intent here is to look at the data with regards to the flight 
envelope, it is apparent that the flight envelope between .74 and .82 mach 
and 19250 and 21250 altitude will be able to generate outputs. If we were 
interested in this region within the IPCS flight envelope, the coverage might 
be satisfactory. 

Fig. 8-13 is the plot of the combination of DCS extracted rules for the 
five networks on one graph. Such a plot can be used to visualize how the 
neural network Voronoi regions are spaced across the region. It can be 
determined if there is complete coverage of the flight envelope. 

2.15 
.x10 ' 

2.05 

Combined View of All DCS Cells 

0.73 0.74 0.75 0.76 0.77 0.78 
Mach 

0.79 0.8 0.81 0.82 

Figure 8-13. Plot of Mach vs. Altitude from All Extracted Rules 

In the DCS flight application, the V&V practitioner may be interested in 
specific information related to input/output ranges, size and location of 
Voronoi regions across the entire input/output domain, or maybe 
chronological formation of the Voronoi regions. Also note that since the 
DCS is adapting during operation, the rules will only represent a particular 
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instance in time. The network could be allowed to continue to train, 
stopped, and rules extracted to compare to the previous sets. This is an 
iterative process that can continue until a sufficient understanding of the 
neural network's adaptation is accomplished. This would allow the V&V 
practitioner to view the movement of the Voronoi regions across time as new 
data is presented to the neural network for training. 

2.2.3 Using Extracted Rules to Uncover Coding Errors 

The rule extraction algorithm, which generated human understandable 
rules, is based on how an input stimulus is matched to a centroid of the DCS 
or its best matching unit (BMU). The human understandable rules support 
verification inspection methods. Each input stimulus results in the selection 
of a BMU internal to the DCS network. The BMU is considered the 
centroid of a cell and each input that related to that BMU is considered to be 
a member of that cell. The human understandable rules were generated to 
describe each cell. The minimum and maximums of each input variable 
related to a specific BMU are used in the rule antecedents. The minimum 
and maximum of each output variable associated with this cell make up the 
rule consequent. Any BMU that did not have input stimulus matched to it 
did not generate a rule. 

When the human understandable rule algorithm was applied to a DCS 
network that had been trained on the Iris data, a discrepancy was noted 
between the number of rules generated and the number of nodes within the 
DCS network. There were fewer rules than nodes. This implied that for the 
set of input data that was used to train the neural network, a node was 
established that never matched any of the other data, and thus these BMUs 
did not have corresponding rules. This led to investigation of the existence 
of these nodes by walking through the source code and looking for 
problems. Debugging and execution traces pointed to a problem in some of 
the DCS code that had been optimized to run within a MATLAB 
environment. The original IPCS DCS code was developed within the C 
programming language. For optimization purposes, when the code was 
moved into a MATLAB script for experimentation, all usage of 'for' loops 
were removed and replaced with vectorized math. One of the lines of code 
used for the optimization dealt with the identification of BMUs, and 
incorrectly referenced the BMU variable. 

Instead of only looking across the existing set of nodes within the DCS 
network, it made use of the DCS maximum allowed number of nodes. In 
effect, when looking for the BMU, the DCS was allowed to consider nodes 
which had not yet been assigned, and by default were at zero value and can 
be thought of as existing at the origin. At times, these nodes were actually 
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better at matching the input than any one of the existing nodes, and DCS 
manipulated these non-assigned nodes when it shouldn't have. The result 
was that nodes that had not been assigned learned and adapted. They 
showed up as having non-zero values and appeared to be nodes upon visual 
inspection of the DCS structure, but didn't actually exist. DCS was losing 
some potential learning within these nodes. The rules ignored these nodes 
since they weren't able to ever become BMUs that led to the discrepancy. 
The line of code was modified to ignore non-assigned nodes, and then DCS 
nodes correctly matched up with the human understandable rules. 

Another example involves using the refined deterministic rules to 
uncover two coding errors. The deterministic rule extraction process is 
designed to have 100% agreement with the performance of the DCS 
network. However, testing of some of the first sets of deterministic rules 
showed that there was a large disagreement between the rules and DCS. 

The rules were re-structured so that the antecedents were broken into a 
rule pertaining to each BMU, and then under the BMU rules, each 
neighboring SEC rule was present. This allowed comparison to see if the 
errors between the rules and DCS were based upon BMU selection, SEC 
selection, or within the consequent. By comparing the BMU output from 
DCS with the specific BMU rule that the input corresponded to, it was 
discovered that the BMU selection was consistent between the rules and the 
DCS. But the selection of the SEC was not matching between the two. 
Further investigation required analysis of the DCS recall function. 

In the DCS recall function, two errors within the same line of code were 
discovered. One was related to substitution of the 'max' for 'min' 
commands within DCS. For the recall function to perform properly, the 
smallest distance is always used to identify the closest node to a stimulus. 
This is true also when selecting the second closest node from among a 
BMU's neighbors. But the code showed that the 'max' function was being 
used in place of the 'min' function. This would subsequently show up 
within the DCS recall function as the DCS always selected the node furthest 
away from the stimulus. 

Further, this same line of code contained an incorrect reference to the 
strengths of the neighborhood for the BMU rather than the distances of the 
neighbors from the stimulus. This mistake is quite a large mistake, but due 
to the nature of the small DCS networks, and the small values on which the 
network was learning, the mistake was masked much of the time. Normal 
testing of the DCS showed that it could achieve accuracies above 90%, even 
with this error present. The robustness of the DCS network made discovery 
of this error difficult. 

The line of code was changed to consider the distances rather than the 
connection strengths and to choose the min instead of max. The rules and 
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DCS were compared again. This gave the expected results of 100% 
agreement. The deterministic rules were deemed a success because they had 
allowed for the discovery of two coding errors, which were not readily 
apparent during normal testing. 

3. SUMMARY 

Along with the IPCS example mentioned in this chapter, neural networks 
are used in safety-related areas including advisory systems for healthcare, 
load forecasting for electrical power and gas, industrial process control and 
monitoring, and fire alarms. The commercial benefit for this technology is 
evident from the extent of industry-led research [Lisboa 2001]. There is no 
doubt that with the use of neural networks expanding to safety-related areas 
that rigorous V&V processes specific to neural networks are required. 
Traditional software V&V must be augmented to accommodate the 
opaqueness and the adaptive nature of the neural network. 

Neural networks lack the ability to explain how they reached a specific 
output. This is one of the main reasons neural networks are not trusted: in 
most applications users want to know the reasoning behind the conclusion of 
the learning system or expert system. Rule extraction algorithms provide a 
means for either partially or completely decompiling a trained neural 
network. This is seen as a promising vehicle for at least indirectly achieving 
the required goal of enabling a comparison to be made between the extracted 
rules and the software specifications. 

Rule extraction would satisfy several roles in the development and V&V 
of high assurance neural network systems. 

1. The V&V practitioner could apply rule extraction to obtain a set of rules 
that mimics the functionality of the network and then use these rules for 
comparison against the original set of requirements. 

2. Rule extraction can provide a tester with insight into what a fixed neural 
network has learned and assist in determining the acceptability of the 
network. 

3. After a neural network has been trained and tested to satisfactory levels, a 
system developer could then apply rule extraction to refine requirements. 
The refined requirements would aid the system tester in the development 
of adequate testing procedures and test cases. 

4. Additionally, these rules could be validated through the use of formal 
methods, such as a model checker. 
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At a minimum, extraction of these rules would provide some sense of 
confidence that the network will behave as it was intended. Extraction 
would be used as static analysis for adaptive systems. The rules would need 
to be extracted after each iteration of learning and then judged for 
correctness. 

There is still much to discover about the use of rule extraction usefulness 
for the V&V of neural networks. Rule extraction offers the possibility of 
requirements traceability in a system that is not explicitly designed. The 
rules can also undergo design team review and analysis to detect improper 
network behaviors or missing knowledge. Through rule extraction, a system 
analyst might be able to ascertain novel learning behaviors that had not been 
previously recognized. By translating these features into a comprehensible 
English sentence, the analyst can gain a better understanding of the 
network's construction and perhaps the input domain as well. 

The same techniques used to map rules from the network in rule 
extraction can also be used in two additional ways: rule initialization or rule 
insertion. Rule initialization is the process of giving the adaptive network 
some beginning knowledge. A system developer may have improved 
confidence if the starting condition of the network is known, which may lead 
to a constrained path of adaptation. Rule insertion is the method of moving 
symbolic rules back into a network, forcing the network's knowledge to 
incorporate some rule modifications or additional rules. An adaptive 
network could benefit from this scheme if the system developer wanted to 
exert a condition onto the network or reinforce conditions in the network. 
Examples of this might include restricting the network to a region of the 
input space or instructing it to deliberately forget some data. 

These rule extraction techniques that are prevalent in the academic 
literature must be compiled into a usable form that will assist the developer 
or V&V team in certifying that the neural network is dependable, 
predictable, and ready for use in a system. Toward the goal of making rule 
extraction techniques readily available to assist in V&V, the authors of this 
document will further their research through a NASA ARC STTR project 
with the goal of developing a comprehensive and practical tool to transfer 
neural network rule extraction technology into neural network development 
practice. 
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Chapter 9 

AUTOMATED TEST GENERATION FOR 
TESTING NEURAL NETWORK SYSTEMS 

Brian J. Taylor 
Institute for Scientific Research, Inc. 

\. INTRODUCTION 

Neural networks in control systems present a difficult problem for 
testing: generation of sufficient sets of data for adequate test coverage. 
Commonly, the neural network developer has a set of data of which upward 
of 75% is used to train the network. This usually leaves less than 25% of the 
remaining dataset for neural network evaluation. Often, that is not enough to 
conduct an in-depth study of the network and certify it for safety- and 
mission-critical systems. 

This chapter presents a test generation algorithm that will facilitate this 
need and improve upon the many different ways the neural network system 
is evaluated. From a system integration perspective, the algorithm can 
increase the size of the available data for testing, and at a reduced cost from 
other forms of generating data. Based on user settings, the algorithm could 
be used to find interesting pieces of new data to exercise the system in ways 
which normal data generation would not. Other forms of testing are possible 
with the algorithm including reliability assessment, stress testing, and 
sensitivity analysis. To facilitate evaluation of the tool itself, a MATLAB 
implementation was created called the Automated Test Trajectory 
Generator. 

Test data generation is defined as a technique that assists in the 
generation of test data. These can include system simulations that allow 
recording of data for later usage, pieces of software that generate random 
sequences of data, or more sophisticated algorithms that are directed in 
specific ways to create test data. 
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Generation algorithms, and test data generation tools especially, have a 
purpose of reducing the testing time by aiding a system developer in 
generating a large volume of test data. 

Several different types of test generators exist but three basic ones are: 
random test data generators, pathwise generators and data specification 
systems. Data specification systems generate test data from a language that 
describes the input data. Pathwise test data generators work to generate test 
data that follows an execution path throughout the program. Random test 
data generators perform exactly as they sound, generating data in a random 
fashion. 

One technique that is lacking in data generation is the development of 
methods to create continuous sets of data. Continuous data (for this chapter, 
referred to as trajectories) can be time-dependent, previous value dependent, 
or some combination thereof In the case of control systems, continuous 
data is necessary to fully test how the system performs. 

When neural networks are placed within the control system, they require 
being tested with continuous data as well. That requirement was the primary 
thrust of the development of the Automated Test Trajectory Generation 
(ATTG) algorithm. 

If the neural network was not in a control system, random data generation 
might work to assist in testing. Due to the nature of the data, the neural 
network should be exercised with trajectories rather than disjoint data points. 
The use of trajectories is even more critical if the neural network learns from 
data trajectories rather than single-point data. 

Within the IVVNN methodology, the algorithm fits into the investigation 
of steps required for the testing of neural network systems. The traditional 
testing approach taken by many neural network developers is the brute-force 
method where the network undergoes testing, testing, and more testing. 
Based on prior experience, this level of testing may fail because of the 
likelihood that inadequate test data is available. This situation leads to the 
consideration of data generation techniques, and this algorithm seems like a 
good candidate. Evaluation of the technique will be done against the 
intelligent flight control system (IPCS). 

In particular, three main questions will be evaluated for this work: 

1. Can this test data generation technique be applied to the non-linear IPCS 
flight data to produce sets of new data that are meaningful? 

2. Can the ATTG tool be improved to facilitate the investigation of question 
1? 

3. How would a verification and validation (V&V) practitioner make use of 
test data generation to apply to the testing of neural networks? 
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2. DETAILS OF THE AUTOMATED TEST 
TRAJECTORY GENERATION ALGORITHM 

The test generation technique draws upon prior work conducted at the 
West Virginia University under the guidance of Dr. Bojan Cukic for 
completion of a Master's Thesis with the then Department of Computer 
Science and Electrical Engineering. During that time, the technique was 
programmed as a command-line interface (CLI) tool which was hard-coded 
to work on a special case: a sensor failure detection, identification, and 
accommodation flight control scheme [Taylor 1999; Napolitano 1999]. 

The possible improvements to test data generation, offered by the step-
by-step process of the ATTG, were significant for purposes of providing 
improvement in the evaluation and analysis of control systems, especially in 
regards to neural network systems. The test case used throughout this 
chapter, the IPCS first generation (GENl) flight control system, makes use 
of two neural network systems, each of which can benefit from usage of the 
test data generation technique. 

For the pre-trained neural network (PTNN) system, a significant amount 
of training data is available from which the PTNN was developed. 
However, this data is collected as single-point data of generally disconnected 
points in the flight envelope. While the PTNN can be tested against each of 
these single points, the training-testing data is not set up to enable testing 
across a continuous range. 

As the PTNN undergoes system integration testing, the data applied to it 
is continuous in nature, originating from aircraft states and measurements 
generated in real-time from either a hardware-in-the-loop simulation or 
another sophisticated high-fidelity simulation. A test data generation 
scheme, as described in this chapter, would aid in the integration level 
testing by providing an ability to generate additional continuous data, at a 
reduced cost by reducing the need for piloted simulations. 

The dynamic cell structure (DCS) network experiences a similar need for 
integration testing and a different need in regards to studying its online 
adaptive learning. Since the DCS network will be adapting in real-time, 
researchers would like to feel comfortable that given different sets of test 
data, the network will adapt in an acceptable manner. The set of data 
generated from piloted simulations may not be enough to achieve that level 
of confidence. This algorithm can offer the DCS developers an option. 

Because one of the IVVNN methodology goals is the creation of 
guidance to aid the V&V practitioner with neural network systems, the 
ATTG needed to undergo several improvements to prepare it for generating 
input into the methodology development. It needed to change to 
accommodate the different kinds of IPCS flight data so that the application 
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of the technique to the PTNN and DCS can be documented and used to 
improve the IVVNN guidance. The following subsections detail the test 
generation algorithm and the modification made to the ATTG to facilitate its 
usage upon IPCS. 

2.1 Description of the Algorithm 

This algorithm works by expanding an existing set of test trajectories into 
a larger set. Here, a trajectory is defined as a sequence of continuous data 
across varying time. The test trajectories must have the characteristic of 
being separable into independent and dependent variables. The independent 
variables are clustered into coarse grain regions of the operational profile, 
and their corresponding dependent variables are placed into their own 
clusters based upon the results of the independent clustering. 

Regressive models are then developed to describe these clustered regions 
and the relationships between the independent clusters and the dependent 
clusters. Each model in turn acts as a predictor for its particular region of 
the operational profile. 

Note that in the use of regression to predict new trajectories, an 
assumption is made that the trajectories undergoing generation can be 
considered random variables that are describable by some function. A 
second assumption is that within the clustered sections of the operational 
profile, the mathematical independent variables can be fitted via regression 
to the random dependent variables that make up the corresponding test 
trajectories of the cluster implying a need for relatively strong correlation. 

The algorithm can be thought of as a function that transforms one set of 
inputs that can be controlled into a set of trajectories that define the 
operational profile for the system that cannot be controlled. A mapping of 
the independent variables into regions of the system input space will occur. 
Once created, the models will be able to generate several new trajectories in 
the input space that are then used for testing. 

2.1.1 Collect Data 

Collection of the test data that undergoes this generation process can be 
done from various sources, such as data collected from actual system usage 
or from data retrieved via a system simulator. 

Because the regressive models require independent-dependent variable 
relationships, the collected data should consist of the intended test 
trajectories to be expanded, along with additional variables that either help to 
create the trajectories or help to define them. The sample trajectories sadsfy 
the dependent variable need and in some cases may contain several 
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parameters, with each parameter consisting of a series of data. The 
additional variables will fulfill the role of the independent variables and 
must contain the same size of data as the trajectories. 

Two requirements for proper operation of the regressive models are that 
the additional variables have some correlation to the test trajectories and that 
they be mathematical variables. For example, if the trajectories for a system 
define an airplane's flight path, pilot inputs would qualify as additional 
variables. If the trajectories described a chemical reaction, additional 
variables could be the amount of reactants used and temperature variation 
during the process. Since these variables will later be perturbed in the 
algorithm, it should make sense that they can be altered in a controllable 
manner. If the independent variables themselves depend upon the 
trajectories, no prediction of new trajectories will be possible. 

2.1.2 Processing the Data 

Depending upon the data collected, some processing of the data may be 
required before it can be used by the model generation routines. For the 
clustering algorithm to work correctly, all data sets should contain the same 
length of data points. This can be accomplished by truncating data sets to 
the size of the smallest data set. If truncation would lose too much data, 
other possibilities include eliminating shorter data sets or interpolation of the 
data to increase the size of the shorter sequences. 

Conversion of the data may also be required if the test trajectories have 
been collected from sources using different units of measurement. This does 
not mean normalizing the different components of a trajectory, but 
normalizing any differences in measurement units between trajectories. This 
might occur if trajectories are recorded on different systems or perhaps even 
across different days. 

If noise is part of the collected data, noise removal by filtering should be 
done as part of the data processing. Several well-known noise-filtering 
algorithms exist from the area of signal processing. These algorithms can 
consist of smoothing filters that will attempt to average out spikes in the data 
due to noise. 

2.1.3 Clustering the Data 

If testing of a system is directed by the operational profile, failures that 
are likely to occur during normal operation are detected based upon how 
often they are used. Lyu [1996] discusses two ways that the operational 
profile test selection can be done: coarse grain and fine grain. Coarse grain 
testing is the process of selecting a region or cluster of the operational 
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profile while fine grain testing is the process of selecting tests from within 
the coarse cluster. While the coarse grain guides the test selection, fine grain 
testing requires several different elements from within the coarse grain 
region. 

Since the goal of the entire approach is to develop test trajectories, it is 
usefiil to separate parts of the controllable variables into clusters that will 
allow the generation algorithm to predict new trajectories within a coarse 
input domain region. By applying clustering techniques to the independent 
variables, division of the test trajectories into the coarse grain regions of the 
operational profile is done simultaneously. 

Once a cluster has been determined, the centroid for each group can be 
found and then used by the regressive models. The centroid is defined as the 
median value of all data contained within the cluster. The basic steps for a 
trajectory-clustering algorithm (dealing with the independent and dependent 
variables) would consist of the following: 

1. Acquire a set of test trajectories 
2. Identify the independent and dependent variables 
3. Select, from amongst the independent variables, data that can be used to 

perform the clustering 
4. Transform these variables, if necessary 
5. Select a distance measure 
6. Select a clustering technique and a desired number of clusters. 
7. Perform clustering 
8. Select a representative component from each cluster 
9. Interpret results 
10. Change variables, clustering technique, number of clusters, etc. 
11. Repeat steps 3 to 9 until results are acceptable 

2.1.4 Variable Selection 

The independent variables that correlate to a trajectory will be the 
parameters that guide the clustering process. If several parameters exist, 
some may have a greater impact on the clustering process than others. Less 
important parameters should be ignored as they can increase the cost of the 
process. 

The selection of parameters to use for clustering can be done with 
analysis techniques like principle component analysis (PCA) and 
multivariate analysis. These techniques can identify variables with higher 
statistical significance, which should be included in the clustering process. 
For example, characteristics of important parameters are their significance to 
the trajectory and their amount of variance. Low variance will not provide a 
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distinguishing metric between trajectories and have little impact on 
clustering. 

No limit is imposed on the number of variables used, but it is suggested 
that the clustering process uses fewer, as opposed to more, variables when 
possible. Larger number of variables can slow the clustering process down. 
The criteria, which designates an appropriate number, is influenced by the 
available processing power of the computer being used to generate the 
trajectories. Memory and processor limitations would have more of an 
impact for a desktop, but probably not for a high-end unit. 

2.1.5 Transforming the Data 

Data scaling may be applied if the parameters are linear in nature and 
have widely varying relative values or are spread across different 
dimensional units. Such a scenario may occur if multiple parameters are 
used in the clustering and one parameter uses measurements in feet while a 
second uses measurements in seconds. These two parameters have little 
relation to each other and scaling them to use non-dimensional units will 
help the clustering process. Scaling should not be applied to data with non­
linear parameters as the scaling can remove this non-linearity. Three 
common techniques used to scale data are normalizing to zero mean and unit 
variance, range normalization, and percentile normalization. 

Normalizing to zero mean and unit variance forces each value of the data 
sequence to fall within a uniform distribution centered around zero. Given a 
series of data X e {xu X2,..., x^j, the î ^ value X/' is scaled by 

. X: - X 
x, '=-^ (9.1) 

where x is the measured mean and cris the standard deviation. 
Range normalization transforms a series of data from \_Xmm ^maA so that 

each data point falls in the range [0, 1]. The scaling formula is 

x, '= ""' """"" (9.2) 

Xmin and Xnuix are the minimum and maximum values that make up the 
series of data. A problem with the range normalization approach is that data 
outliers of extreme ranges will have a major influence on the min and max 
values causing poor normalization. The next scaling technique works better 
under those circumstances. 
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Percentile normalization performs very similarly to range normalization 
except that data is transformed so that 95% of the data points making up X 
fall between 0 and 1. With this technique, data outliers who will fall above 
97.5% or below 2.5%) of the average value will not affect the normalization 
process. The data is scaled by 

x^ =^ ^^- (9.3) 

2.1.6 Distance Metrics 

A standard way of expressing relationships of trajectories in a cluster is 
through a distance metric between those trajectories [Hartigan 1975]. The 
distance metric is calculated over an A2-dimensional space where n represents 
the number of chosen parameters used to describe a trajectory. This metric 
is then used to identify which group a trajectory belongs to by determining 
how close it is to the group centroid. The distance metric selection is just as 
important as the selection of which variables are to be used to perform the 
clustering. One distance metric may perform well at distinguishing between 
trajectories in the cluster while another distance metric may include every 
single trajectory. 

The most commonly used distance metric is Euclidean distance. 
Euclidean distance is simply the distance, d, between two trajectories across 
the entire sequence of data. 

Assuming that a trajectory is defined as X{xj, X2, ..., xj, then the distance 
between two trajectories, x and j ^ , is given by: 

d = 
.'=1 

(9.4) 

where the distance squared between each parameter of a trajectory is 
calculated. If the trajectories are n dimensional, the distance metric changes 
to: 

•yif+(^2,.-y2f+'"^(\.-yny\y (9.5) 
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A variation on Euclidean Distance is the Weighted EucUdean Distance. 
This distance metric applies a weighted value at to each parameter based 
upon that parameters significance. 

IL^ii^i-yiY (9.6) 

where a/, / = 1,2,..., n, is the chosen weight for the respective parameter. 
The weighted distance metric can be used if the parameters have not been 
scaled yet or to give more control over how the clustering algorithm will 
perform based on a priori knowledge [Hartigan 1975]. 

Another suggested distance metric is the Chi-Square distance. This 
metric is primarily used in distribution fitting. Before this metric is used, 
each individual parameter, Xu must be normalized in order to prevent 
parameters with lower values from having higher weights. 

^^j^jhZliL (9.7) 

2.1.7 Clustering Techniques 

Clustering techniques fall into one of two categories: hierarchical and 
non hierarchical. In non-hierarchical techniques, trajectories are assigned 
into k arbitrary clusters until the intragroup variances of each cluster reach a 
minimum. The value of A: can be user specified. 

In hierarchical techniques, the collection of trajectories is divided into n 
desired groups. Hierarchical techniques may be either agglomerative or 
divisive. With agglomerative techniques each trajectory is separated into its 
own cluster. Neighboring clusters are merged together based upon distance 
metrics until the desired n groups are attained. Divisive techniques start 
with all trajectories in one cluster. The cluster is then divided until it reaches 
the desired number ofn clusters. 

2.1.8 Interpreting the Results 

The number of trajectories in each cluster will serve as a measure of 
coarseness of the regions of the operational profile. A typical cluster 
generally should have around 4 or 5 trajectories within it. If no trajectory 
was omitted from the cluster, the number of expected clusters could be 
increased or reduced. While it can happen that each cluster contains only 
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one trajectory, having more than one per cluster will allow for better model 
fitting for that particular cluster. If there are obvious trajectories existing as 
outliers of the cluster, the clustering technique should probably be refined. 
Any outliers will skew the model development results. 

2.1.9 Selecting a Representative Trajectory 

After the clustering has been performed, a set of independent variables 
should be selected that serves as the average of the cluster. Since the 
clustering was performed upon independent variables, the component 
selected should be the sequence of data that lies closest to the centroid of the 
cluster based upon the chosen distance measure. 

After the set of independent variables have been selected, the trajectory 
associated with this set becomes the representative trajectory. The purpose 
of the representative trajectory will be to give the regressive models the best 
selection that they can use to develop new trajectories within the cluster. 
The representative trajectory serves to define the cluster by labeling the 
coarse region of the input domain. 

2.1.10 Developing a Model 

Ideally, whatever model is chosen should be of much less complexity 
than the software component being tested. Use of various regressive models 
is suggested, including simple linear, multiple linear, autoregressive moving 
average (ARMA), and non-linear models. The linear models have shown to 
be a simplistic approach achieving short computational time. The important 
point to remember is that the success of the models will be determined by 
the acceptability rate determined by the acceptance testing of the data being 
generated. 

In order to choose the best model, the algorithm should develop several 
different models and try different combinations of input data. For example, 
for each representative trajectory, a simple linear model could be developed 
for one of many different independent variables. The same can be done for 
combinations of independent variables for the multiple-linear regressive 
model. By exhaustively trying combinations of independent-dependent 
variables, the algorithm can vote to choose which model works the best for 
that particular cluster of trajectories. This also prevents the algorithm from 
being locked into any one type of regressive model across the entire domain. 
As regions of the operational profile change, the models are allowed to adapt 
to that part of the domain. 
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2.1.11 Discriminant Analysis 

When attempting to determine which variables are the most significant 
for use in the regressive models, discriminant analysis may need to be 
considered. Many techniques for discriminant analysis exist, such as PCA 
and multivariate analysis. PCA looks at the correlations between the 
independent and dependent data. By using a correlation matrix, PCA 
assigns weights to variables that have a higher correlation to the dependent 
data. The higher the weight, the more significant the variable will be. The 
variables chosen for the models should represent the most significant 
parameters. 

If multiple-linear regression is chosen, it is suggested that only models 
using two, three, or four variables be used. Additional variables will not 
increase prediction significantly and will decrease time efficiency and add 
unnecessary complexity. 

2.1.12 Smoothing 

Application of a smoothing function to the final results of the model may 
be applied to remove sharp edges in the model output. The easiest form of 
smoothing is averaging the trajectory. Under averaging, a point of data is 
added to neighbors on both sides of the data point and divided by n, the 
number of data points added together. 

2.1.13 Cross Correlation Analysis 

The advantage of using the trajectory closest to the centroid to represent 
the cluster becomes apparent when a decision has to be made about choosing 
the best regressive model. After a regressive model is constructed, the 
model can be applied to the remaining trajectories in the cluster. The 
regressive model's predicted output to these unused trajectories can then be 
directly compared to the actual trajectories themselves through the use of 
correlation analysis to determine the accuracy of the models. 
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Cross-correlation analysis looks at the relationship between two 
sequences of data through a correlation coefficient, r. The stronger the 
relationship, the higher the value of the coefficient. The equation for 
correlation is given by: 

^^^ (s^Xiy) 

E x ^ - ^ ^ - ^y2_{Yjf_ 
(9.8) 

where X is the summation of all data points in X, XY is the summation of 
the product of all data points in X and 7, and n is the total number of data 
points. 

The values of r can range from +1.00 to -1.00 with a perfect reladonship 
occurring at 1.00 and a perfect inverse relationship occurring at -1.00. 
Values for r between 0.00 and 1.00 indicate that some relationship exists but 
that it is not perfect. As r approaches 1.00 the relationship between the two 
trajectories becomes stronger. 

After a model has been developed, it is then applied to each of the 
remaining trajectories in the cluster. The model's predicted output is then 
compared against the actual recorded rates through cross-correlation. This 
will result in a table of correlation values for each model against each 
trajectory in the cluster. 

2.1.14 Choosing the Best Model 

The choice of the best model is dependent upon the results of the 
correlation analysis from each model and the total computation time per 
model. An equation describing the selection can be written as 

P^Tmodel ^e^'-''-^'''"''^^'''' (9.9) 

where Tmodel represents the average time to build a particular regressive 
model, and cor model represents the average correlation of that model. P is 
then a quantifiable measurement of the value of the particular regressive 
model approach towards the prediction within the cluster. This equation has 
smaller values for regressive models that can be built faster and for 
regressive models that have higher correlations between the predicted and 
recorded trajectories. Model selection is then made by choosing the 
regressive model with the smallest value of P. 
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2.1.15 Perturbing the Original Data 

By perturbing the original parameters used as independent variables in 
the regressive models, the system is able to generate predictions from the 
new input. The amount of newly generated trajectories is then related to the 
amount of new independent variables that can be perturbed. Any trajectories 
within a cluster are available to undergo perturbation, even the 
representative component. 

How the original data is perturbed is very important. It cannot be 
modified too much, lest the data becomes irrelevant to the models just 
developed. Provided that the time series data resembles multiple step 
functions, there are various ways to perturb the data. 

One method is to multiply the original data by some value. This keeps a 
consistent rate of change but modifies the amplitudes of the time series data. 
The value by which the original data is multiplied should not be so large that 
the perturbed data would no longer correspond to trajectories inside the 
cluster. Perturbation via multiplication should probably keep the new data 
within ±5% of the original data. 

A second method is to modify the duration of some value in the data 
sequence while keeping consistent values for the amplitudes. 

2.1.16 Application of the Model 

After a new set of data has been generated, this data is then given to the 
model for prediction of new test data. While this is the simplest module, 
care must be taken to ensure that all model descriptions, including 
coefficients, have been stored for later use. As was done with the model 
generation, a smoothing function can be applied here to the regressive model 
output. 

2.1.17 Acceptability Rules 

One of the more important parts of the algorithm is to determine if the 
newly created test data actually qualifies as acceptable data. A set of rules 
describing acceptable trajectories can be used against the predicted 
trajectories to determine valid tests. After each iteration of the algorithm, 
the rules are applied to both the output trajectories predicted by the models 
and the perturbed independent variables used for those models. 

The acceptability rate of the generated trajectories can guide the 
generation process as well as give an indication to how successful the 
approach is. If a certain perturbation process produces higher acceptability 
rates, that process could be further used with minor modifications as needed 
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during each iteration. Perturbations producing bad results, of course, would 
be avoided. This implies a relationship between the perturbation and 
acceptability modules. 

One guide to developing acceptability rules upon the perturbed input can 
be the distance metric used for the clustering process. Since the clustering 
was performed upon the independent variables, the distance between the 
perturbed data and the cluster centroid can decide if the perturbed data falls 
within the cluster. Perturbations, which produce new values falling outside 
the cluster, are discarded. 

Acceptability rules defined to analyze the regressive model outputs can 
be based upon the correlation of the output trajectories to the trajectory 
defined as the representative component for the cluster undergoing 
regression. Since this trajectory acts as the classification of the coarse grain 
input, predictive trajectories that fall outside of a 70% correlation could be 
rejected as falling outside of the coarse grain region. 

Another possible area of regressive output rules are those that are system 
specific. These rules would identify any trajectories or perturbed 
independent variables that violate some definition of the input domain, 
perhaps by exceeding minimum or maximum values. These rules can look 
at anything from slope analysis of the trajectories to comparisons of global 
minimums and maximums. 

2.2 Example Tool Usage Results 

For testing the suitability of the algorithm, two different data sets were 
used. The first was an original set of data that had been used to create the 
first implementation of the test tool. The second was a set of data that was 
generated from a simulation used by the IPCS program. 

2.2.1 Usage of the ATTG Algorithm on SFDIA Flight Data 

The SFDIA data set comes from a project between ISR, WVU, and the 
NASA DFRC. This data set is a collection of independent variables (pilot 
inputs of pitch, yaw, and roll, and aircraft speed, Mach) and dependent 
variables (aircraft state measurements of P, Q, and R). The test data 
available was completely generated through the usage of the Aviator Visual 
Design Simulator flight simulation program. 

Since the original version of the ATTG was written to produce extra sets 
of SFDIA test data, this data was used for tool testing purposes throughout 
the ATTG's re-design and development. 

The SFDIA data was collected in a manner that lent itself to pre-
clustering of the data sets. Each of these pre-clusters was a collection of 
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roughly 15 sets of data from a reasonably consistent performance of an 
aircraft maneuver. Because of this, the ATTG was only able to perform 
minor improvements to the clusters by eliminating outliers. 

This was one of the differences with the new ATTG. When a data set 
was read in, the ATTG performed clustering within this pre-cluster, often 
times separating the pre-cluster into three to four good clusters. This meant 
that the ATTG was differentiating the same consistent maneuvers into finer, 
more closely related maneuvers. This consequently led to better regressive 
model development over the prior implementation and better acceptability 
results. 

Results from applying the CLI version of the ATTG to the SFDIA data 
can be found in "Regressive Model Approach to the Generation of Test 
Trajectories" [Taylor 1999]. Since the GUI ATTG matched the results from 
the CLI ATTG, no further results are presented here for brevity. 

2.2.2 Usage of the ATTG Algorithm on IFCS Flight Data 

The IFCS flight data is a collection of independent variables (eight sensor 
readings including mach, altitude, alpha, beta, stabilator deflection, aileron 
deflection, canard deflection, and rudder deflection) and dependent variables 
(26 stability and control derivatives). The NASA DFRC-developed F-15 
flight simulator generated the available data. 

There were several problems encountered in applying the ATTG to the 
IFCS flight data. Briefly, these included: 

1. Handling of the IFCS validity flags and their consequences on generating 
data 

2. Handling a single IFCS data set per cluster 
3. Dealing with partially controllable independent variables 
4. Dealing with different test data sets 

Problem 1 - Handling of the IFCS Validity Flags 
The IFCS data set is intended as a collection of data used to train the 

DCS neural network. For space consideration, details on the workings of the 
DCS neural network are not presented here, but additional information can 
be found in "Direct Adaptive Aircraft Control Using Dynamic Cell Structure 
Neural Networks" and the DC neural network report for the IFC program 
[Jorgensen 1997; ISR 2001]. 

The IFCS data set is composed of three classifications of data: sensor 
readings, stability and control derivative deltas, and stability and control 
derivative delta validity flags. The sensor values are the independent 
variables for the system. The DCS networks use these for training, but they 



244 Chapter 9 

are not the values that the DCS networks recall. The sensor values work 
well as the independent variables within the ATTG tool. 

The stability and control derivative deltas (or just derivative deltas) are 
generated by another software component, the parameter identification (PID) 
system. The derivative deltas are the important dependent variables that are 
used by the DCS networks to train upon. 

The derivative validity flags are an indication of the confidence the PID 
has in the values it is generating. In this way, the validity flags act as an 
initial check, or even run-time monitor, on the PID output. When the flag is 
a one, the derivative delta is considered valid and should be used by the DCS 
for training. When the flag is a zero, the derivative delta is considered non-
confident and the DCS does not use the value for training. 

This presents the first problem. The ATTG algorithm should not be used 
to estimate the validity flags. Statistical generation of the validity flags 
would have no meaning within newly created data sets. However, the 
ATTG should only generate data that the PID has considered valid - it would 
do V&V personnel no good to generate data that is considered invalid by the 
system. 

This leads to one possible solution: pre-process the IPCS data by 
identifying slices within the dependent data which are considered valid, and 
only use these valid segments from which to generate models and new data. 

The solution is complicated though by the nature of the usage of the 
dependent data by the DCS networks. Each DCS network takes in multiple 
dependent variables for training. For example, the Cz DCS network uses 
Cza, Czdc, and Czds as dependent variables. These variables have to be 
presented at the same time and synchronized for the same time because they 
utilize the same independent variables (the sensor data). So any slices that 
are created through the pre-processing need to be a slice across all of the 
dependent variables together. 

This could lead to difficulty in model fitting because for any given 
dependent variable there may be sections within the slice that contain invalid 
data (because the corresponding dependent variables are valid during this 
section). 

Problem 2 - Handling a Single IFCS Data Set Per Cluster 
Problem 2 occurs because each IPCS data set is usually one maneuver 

across a time of 60+ seconds, with some maneuvers extending beyond 
several minutes. Obtaining consistent maneuvers over long periods of time 
is difficult because human pilots can be highly non-deterministic. This 
implies that each set of collected data for a maneuver will reside within its 
own cluster. If not, then the collected data within a cluster for a particular 
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maneuver may be so different between each instance of that maneuver that 
good regressive models cannot be made to fit the entire cluster. 

Problem 3 - Dealing with Partially Controllable Independent 
Variables 

The third problem is a relatively minor problem, but is something that 
should be considered and addressed. For a proper perturbation of the 
independent variables, the variables are assumed to be controllable. By this 
it is meant that the variables are somehow specifically selected or chosen. 
For example, a pilot's inputs are a function of a pilot's desires; the motion of 
controlling an aircraft is repeatable and generally by design. 

With the IFCS data, the independent variables are sensor readings 
describing the state of the aircraft. These include Mach, altitude, alpha 
(angle of attack) and beta (sideslip angle). While the pilot can influence 
each of these (Mach - throttle control, altitude, alpha, beta - stick inputs), it 
could be argued that these variables do not necessarily lend themselves to 
perturbation. They are not true controllable variables because they are not 
selected or chosen; they are measurements from the results of other selected 
or chosen variables. 

For the purposes of this experiment they were chosen anyway. However, 
perturbations placed upon these variables should be well understood. 
Perturbations such as adding random noise would be acceptable, while 
modifying them to resemble a step function or application of a non-linear 
multiplication may not. 

Problem 4 - Dealing with Different Test Data Sets 
The fourth problem is less of a problem and more of an important 

consideration. As there are five DCS networks within the IFCS system, and 
each network requires a different set of independent-dependent inputs for 
training, the ATTG must be applied five different times to generate data for 
each network. It is not configured to automatically generate subsets of data -
the ATTG user must do this manually. 

2.2.3 Example from Applying ATTG to IFCS Flight Data 

There was not enough time within the schedule for this subtask to 
complete an exhaustive application of the ATTG tool to the IFCS data. It is 
expected that during later tasks, the tool can be re-applied to IFCS data to 
garner better results. 

There was enough time to use a single set of flight data that was 
generated by a NASA DFRC simulation with the ATTG tool. Since there 
are five DCS networks, the Cz network was chosen for data generation. The 
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Cz network has four independent variables (mach, altitude, alpha, and beta) 
and three dependent variables (Czadelta, Czdcdelta, Czdsdelta). 

2.2.4 Cluster Results 

As explained in the description of the problems encountered when 
applying the ATTG algorithm to the IPCS data, each cluster only includes a 
single member. Therefore no real clustering was performed on the IPCS 
data. 

2.2.5 Regressive Model Results 

Each dependent variable had 57 models created for the single cluster. 
Predictions for Czadelta were very good with an average correlation 
usually around 90% with real data. The linear and ARMA models were able 
to achieve above 90% for some situations. Predictions for Czdcdelta had 
equally similar results with most of the models achieving between the upper 
80% to lower 90% cross-correlation. As expected, Czdsdelta was the worst 
because it never contained valid data, and therefore model fits were usually 
in the mid-30%) to low 40% range. 

2.2.6 Best Regressive Model Results 

Since there was only one cluster, there were only three best models 
selected, one for Cza_delta, Czdc_delta, and Czds_delta. 

Table 9-1. Selection of the Best Model for Each Dependent Variable 
Dependent Variable Best Model to Predict Variable 

Cza_delta ARMA {machavgnew} 
Czdc_delta ARMA {alphaavgnew} 
Czds_delta ARMA {alpha avg new} 

New Generated Flight Data 
New independent variables were created by applying a randomly 

distributed white noise of 2% to the original set of independent variables. 
This new data was then fed into the regressive models and new dependent 
variables were generated as indicated in the following examples. 

Cza, as shown in Fig. 9-1 had the best visual and acceptability results. 
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Figure 9-1. Cza Results 

Czdc, as shown in Fig. 9-2, while having high correlations (around 90% 
for the regressive models) did not produce as acceptable a visual result. As 
expected, the Czdc acceptability was quite low. 

The results for Czds, as shown in Fig. 9-3, are at first disappointing 
visually, but they are explained by the fact that Czds is never considered 
valid within the IFCS system, and so building a model to predict the Czds 
data would not be beneficial in the first place. The amount of variance seen 
within Czds is a reason for it being considered invalid by the IFCS system 
and a reason why the regressive models were not able to fit the data very 
well. 

2.3 Hoŵ  the Algorithm is Useful to V&V Practitioners 

The algorithm has many potential uses, some of which are briefly 
discussed here. It can create new data for general testing purposes, can 
assist in the specific creation of larges sets of similar data for sensitivity 
analysis or 
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large sets of widely different data for anomalous testing, and is an overall aid 
in brute force testing or reliability assessment. 

2.3.1 Creation of New Data 

One of the expected problems facing V&V practitioners is the lack of 
available test data to test a system with neural networks. In fact, the V&V 
practitioner may be presented with only the exact same data used to train/test 
the neural network. The test generator will offer the ability to take those 
data sets and create additional data sets. 

In some situations, the generation algorithm can fit the original data well 
and thus be able to produce very similar sets of new data. But from 
experience, what is more common is slightly poor fitting due to 
nonlinearities within the data. In those situations, the model can share 
similar trajectory characteristics like spiking trends and general shape, but it 
is not a perfect fit. Yet this might be the strength of the algorithm. 

Because of the difficulty in matching nonlinear data, the model is close, 
but not exact. This imprecision offers the ability to create new data that is 
different and perhaps entirely new to the existing neural network knowledge. 

The created data sets can have any number of different characteristics. 
The V&V practitioner can choose to create good approximations with the 
regressive models and allow for small perturbations of the independent 
variables to perform a sensitivity analysis on the neural network system. 

Consider Fig. 9-4. These are the results of building a predictive model 
describing the stability and control derivative Cma. The model was 
composed of the independent variables alpha, beta, altitude, and Mach 
number. This derivative is highly influenced by the independent variable 
alpha, or the angle of attack of the aircraft. In the figure, the original Cma 
value is represented in red. The predictive model, applied with no 
perturbation on any of the independent variables, is represented in blue. To 
evaluate the change in the output of the predictive model given small 
changes to alpha, three perturbations were applied to alpha. These were 
merely multiplication by constant values of 1.1, 1.3, and 1.5. 



250 Chapter 9 

0.05 

0.04 

0.03 

0.02 

0.01 

-0.01 

-0.02 

-0.03 

-0.04 

-0.06 

h 

\\ 

V 

\-

1 

A 

1 
cma 

1 

r 

alpha: 

1 1 

L 

1 J~~ 

M.5 

1 |__ 

1 I 

alpha = 
alpha = 
alpha = 

1 1 

" 1 " • 

/ 
/ 

= 1.0 
= 1.1 
= 1.3 

-^ i 
— cma 1 
— alpha = 1.0 

alpha = 1.1 k 
— alpha = 1.3 

alpha = 1.5 |{ 

-̂  

.^^^^--^^ - — ' " ^ ^ ^ ^ ^ N , ^ ! 

•J 

^ 

J 1 1 

10 12 14 16 18 20 
Time 

22 24 26 28 30 

Figure 9-4. Example of Sensitivity Test Generation 

The small constants applied to alpha produced similar trajectories. It 
wasn't until alpha was modified by a 50% change that the generated 
trajectory started to change. This gives the ability to create data that is very 
similar, yet have a small enough difference to examine how the network will 
perform. It is possible that small changes between test trajectories can show 
interesting behavior patterns of the neural network. This may lead to more 
direct testing efforts or re-evaluation of the network's learning and to a 
better understanding of how it will handle data within the system. 

2.3.2 Anomalous Data Evaluation 

Another approach a V&V practitioner may desire is to create imperfect 
regressive models or to widely perturb the independent data so as to create 
significantly different test sets with lower statistical relationship to the 
original data. This technique may introduce the neural network to entirely 
new sets of test data, even test data that may not totally exist within the 
operational profile of the system. Such data could allow the V&V 
practitioner to examine how the system will react to anomalous data. Does 
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the neural network system handle anomalous data and can it operate 
correctly given such data? 

Fig. 9-5 depicts the test generation algorithm modeling of the Cnda 
derivative. In this instance, the best model chosen was a 4-variable multiple-
linear regression built using the independent variables of alpha, beta, 
altitude, and mach. The model lacks some of the spiking characteristics of 
the original signal and is perhaps a suitable candidate for creating drastically 
different data sets for testing. 

x10 

250 
Time 

Figure 9-5. Predictive Model for the Cnda Derivative 

Figs. 9-6 through 9-9 show some of the possible combinations that can be 
selected with the perturbations on the independent variables to give different 
data sets. 

In Fig. 9-6, alpha has been augmented with a 2% random noise across its 
entire trajectory. None of the other independent variables were modified. 
Combining this alpha with the unmodified beta, altitude, and Mach, the 
multiple-linear regressive model generated a slightly noisy signal. Some of 
the spiking characteristics of the original Cnda begin to appear with this 
augmented data. 
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Figure 9-6. Results from Introducing Random Noise on Alpha 

Fig. 9-7 (note the different y-axis scale from other figures) shows what 
happens when the independent variable, altitude, is modified to account for a 
0.05% random noise. The high amount of variance now apparent in the 
newly generated trajectory indicates the close reliance the regressive model 
has on altitude and demonstrates how much Cnda can change with small 
perturbations. But this high amount of variance may be something of 
interest to the practitioner because it will allow inspection of the neural 
network should it receive such a signal during operation. The practitioner 
may want to investigate how an adaptive neural network would respond to 
this high amount of variance, or he/she may want to see how a non-adaptive 
network will behave. 

Changes in beta did not affect the newly generated data as much as 
shown in Fig. 9-8. Like the perturbations on alpha, changes in beta show up 
as spikes within the generated trajectory. Again, this shape of the signal 
may be useful during testing and analysis. 
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Figure 9-8. Results from Introducing Random Noise on Beta 
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Besides changing the signal by adding variance, the newly generated 
trajectories can undergo a translation along a dimension, as can be seen in 
Fig. 9-9. Here Mach was multiplied by a very small change. The result was 
an increase in the trajectory, almost as if a bias was added into it. 
Generation of signals like this would allow for testing of consistent 
trajectory behaviors (peaks and dips, rate of change, etc.), but at different 
magnitudes. 
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Figure 9-9. Results from Introducing a Constant Multiplier on Mach 

2.3.3 Brute Force Testing and Reliability Assessment 

The V&V practitioner may also want to use the trajectory-generating tool 
for the generation of good statistically related data for brute-force testing of 
a neural network system. If the neural network system undergoing 
evaluation requires a certain level of confidence for an expected failure-rate, 
then large sets of test data along with statistical analysis is the method by 
which to determine and verify that confidence. In some situations, the 
amount of test data to achieve that level of assessment will simply not be 
available to the V&V personnel. The trajectory generator would be one 
option they would have to try to increase the number of test sets. 
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3. SUMMARY 

Three questions were investigated for this work. 

1. Can this test data generation technique be applied to the non-linear IPCS 
flight data to produce sets of new data that are meaningful? 

As the results within Section 2.3.2 show, the algorithm is applicable to 
the non-linear IPCS flight data and, with the usage of the ARMA models, 
can produce acceptable new data. The technique still requires several more 
iterations upon the IFCS flight data to produce better acceptable statistics. 
Other answers may be needed in regards to the four problems that were 
experienced in applying the algorithm to the data, and perhaps some of these 
solutions can be folded back into the algorithm itself. 

2. Can the ATTG tool be improved to facilitate the investigation of Question 
1? 

The ATTG tool was improved and is now flexible enough to allow the 
generation of data from different sources, with different dimensionality, and 
with different sizes. This was necessary because the algorithm needs to be 
tested and the tool should not interfere with that process. Now that it exists 
as a generally easy to use GUI within MATLAB and provides improved user 
feedback including visual displays, it allows the algorithm to be applied and 
studied much more easily than it had before. 

3. How would a V&V practitioner make use of test data generation to apply 
to the testing of neural networks? 

Section 2.3 provides some discussion on the usefulness of the technique, 
but there are probably even more possibilities. Essentially, though, the 
algorithm will facilitate the application of testing and testing preparation 
because it provides a way to create additional test sets. These test sets can 
be controlled during development to allow a V&V practitioner to decide 
how the test sets can be used and possibly what to expect from them. The 
algorithm allows for the creation of very similar trajectories from original 
trajectories (facilitating sensitivity analysis, reliability assessment, or brute 
force), for creation of widely varying not-too-similar trajectories (for 
sensitivity analysis or stress testing), and for the creation of combinations of 
the two types, which may allow for discoveries within the testing process 
through an automated means. 



256 Chapter 9 

REFERENCES 

Hartigan, J. A. 1975. Clustering Algorithms. Yale University. Wiley & Sons. 
ISR 2001. Dynamic Cell Structure Neural Network Report for the Intelligent Flight Control 

Program. Internal Deliverable written by the Institute for Scientific Research, Inc. for 
NASA Dryden Flight Research Center, Co-Op Agreement NCC4-125, January 4, 2001. 

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft Control Using Dynamic Cell Structure 
Neural Networks. NASA Technical Memorandum 112198, NASA Ames Research 
Center, Moffett Field, California, May. 

Lyu, Michael. R. 1996. Handbook of Software Reliability Engineering. IEEE Computer 
Society Press. New York: McGraw-Hill. 

Napolitano, M.R., Molinaro, G., Innocenti, M., Martinelli, D. 1999. A Complete Hardware 
Package for a Fault Tolerant Flight Control System Using On-Line Learning Neural 
Networks. In Proceedings of the 1999 American Control Conference. San Diego, CA. 
4:2615-2619. 

Taylor, Brian J. 1999. Regressive Model Approach to the Generation of Test Trajectories. 
Master's thesis, West Virginia University. Available at 
http://etd.wvu.edu/templates/showETD.cfm?recnum=1077. 



Chapter 10 

RUN-TIME ASSESSMENT OF NEURAL 
NETWORK CONTROL SYSTEMS 

Bojan Cukic\ Edgar Fuller^, Martin Mladenovski\ and Sampath Yerramalla' 
^Lane Department of Computer Science and Electrical Engineering, West Virginia University, 
^Department of Mathematics, West Virginia University 

1. INTRODUCTION 

Since online self-adaptive systems are characterized by continual 
adaptation to changing environmental conditions, the safe behavior of such 
systems cannot be guaranteed using traditional software validation methods. 
This chapter presents run-time risk assessment methodology, a novel 
methodology for validating self-adaptive software systems based on online 
operational monitoring and data fusion techniques. 

Online operational monitoring is a multiple-monitor based validation 
methodology that inherits its theoretical underpinnings from the generic 
stability and convergence analysis of Lyapunov's theory. The output data 
from various monitors are fused together using Murphy's rule based on 
Dempster-Shafer framework [Murphy 1998, Murphy 1996] and Fuzzy 
Inference System to form a single measure of confidence. The confidence 
measure indicates whether or not the output from the self-adaptive system's 
learning can be trusted over time. 

The presented validation technique is applied to a neural network based 
online self-adaptive system, the intelligent flight control system (IPCS). In 
this application, environmental changes include system failure modes, such 
as a stuck stabilator, broken aileron and/or rudder, sensor failures, etc. Even 
though this case study is very specific, sound theoretical foundation of the 
presented validation technique makes it generally applicable to assure a wide 
range of autonomous online self-adaptive systems with embedded soft-
computing learning paradigms. 
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Self-organizing neural networks, introduced by Kohonen [1988] and 
modified by several others over the last twenty years, offer topology-
preserving adaptive learning capabilities. These learning capabilities can, in 
theory, respond to abstractions from a much wider variety of complex data-
manifolds. The significance of this is that the type of data encountered in an 
adaptive flight control system in general consists of complex data-manifolds. 

A provably self-stabilizing neural network ensures that while the 
adaptive system tries to achieve its central goal, the embedded neural 
network may not deviate the system in an unpredictable manner towards 
instability due to a dramatic change in its learning state (possibly due to a 
system-failure). It is not known at this point whether a neural network of 
such capabilities exists, let alone the complicated and challenging task of 
proving that it is self-stabilizing in some manner for all conditions of input 
data [Yerramalla 2004a, Yerramalla 2004c]. 

This leads us to the following set of questions: 

1. Is the online neural network learning algorithm self-stabilizing in some 
manner for certain data representations? 

2. Is there a means to detect if the neural network is not stabilizing but 
deviating towards instability (abnormal behavior)? 

Online stability monitoring is employed using multiple monitors to 
provide an answer to the above questions. The construction of an online 
stability monitor is based on rigorous mathematical stability analysis 
methodology - Lyapunov's direct method [Yerramalla 2004b]. The output 
data from various monitors are fused together using Murphy's rule based on 
Dempster-Shafer framework [Smets 1990] and Fuzzy Inference Engine to 
form a single measure of confidence. The confidence measure indicates 
whether or not the output from the neural network's learning can be trusted 
over time. The complete validation scheme is shown in Fig. 10-1 on the 
next page. 



Run-Time Assessment of Neural Network Control Systems 259 

Neural Network Tramine 
1 Data Stream 

• 

Online Neural 
Network (OLNN) 

Neural Network 
Monitor Values 

• 

1 Control Adjustments to the 
Flight Cor itrol System 

Dempster-Shafer 

/ 
Monitor Values 

\ 

^ 

;:i 
Fuzzy Logic 

Inference Engine 
m 

Figure 10-1. Neural Network Validation Scheme 

The NASA Dryden Flight Center IPCS first generation (GENl) contains 
an online learning neural network, the Dynamic Cell Structure (DCS) neural 
network. The purpose of the DCS network is to learn stability and control 
derivatives in real-time to augment the fault-tolerant flight control system 
onboard an F-15. The DCS network, its structure, and its learning 
algorithms are explained in several publications [Jorgensen 1997, Bruske 
1994]. This chapter assumes the reader has an understanding of DCS 
operation and a basic understanding of self-organizing neural networks. 

2. RUN-TIME MONITORING AND DATA FUSION 

The online learning neural network, although close to representing the 
input data pattern, may fail to mirror the topology of the training data, 
especially if the neurons representing topological and non-topological data 
patterns are equidistant from each other. For the software validation 
purpose, a single monitor may not provide sufficiently thorough 
understanding of the adaptation dynamics [Yerramalla 2004a]. Any online 
self-adaptive system is likely to encounter multi-dimensional datasets. 

For most flight profiles in the IFCS, input datasets contain 32 
dimensions. It is not practical to plot all 32 dimensions of the data over time 
and manually detect network faults. Hence, a monitoring approach is 
needed that can observe different aspects of the adaptation and indicate if 
and when the network generates faulty representations of the presented 
training data. This will be a way to detect whether the states of the adaptive 
system deviate towards instability. Consequently, multiple Lyapunov-like 
functions are needed to observe various aspects of the neural network to 
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adequately monitor its the behavior during onUne adaptation. This is the 
role that run-time monitors play in the validation methodology discussed 
here [Yerramalla 2004a - Yerramalla 2004c]. The Lyapunov-like functions 
selected for run-time monitoring will be briefly described. 

Definition 2.1 (Monitor #7, Best Matching Unit (BMU) Error). BMU 
Error is the Euclidean distance between each data element of the presented 
input (training) data pattern me M d R^ and its closest neuron (node) of 
the neural network, known as the BMU w^^y (m) e W cz R^. 

Monitor#l= Y^W^~ ^BMU(^)\\ (10-1) 
meM 

Definition 2.2 (Monitor #2, Second Best Matching Unit (SBU) Error). 
SBU Error is the Euclidean distance between each data element of the 
presented input (training) data pattern me M d R and its second closest 
neuron (node) of the neural network, known as the SBU 

w SBU {m)eW CLR'' . 

Monitor#2= J]\\m-WsBu(m)\\ (10.2) 
meM 

Definition 2.3 (Monitor #5, Neighborhood (NBR) Error). NBR Error is 
the mean Euclidean distance between each data element of the presented 
input (training) data pattern me M cz R and the set of neighborhood 
neurons (connected nodes) of the BMU of the neural network, known as the 
NBR-set w^^^^j(m.BMU) eW czR^. 

Monitor#3 = Y, T^eanwn - Wrŷ^̂ ^̂ i (m) j (10.3) 
meM 

Definition 2.4 (Monitor #¥, Non-Neighborhood (Non-NBR) Error). 
Non-NBR Error is the mean Euclidean distance between each data element 
of the presented input (training) data pattern me M cz R and the set of 
laterally connected, non-neighboring neurons of the BMU of the neural 
network, known as the Non- NBR-set w,̂ ^̂ ^̂ ^̂ ^̂  (m,BMU) e W d R^. 

Monitor#4= X ^e^^l^-'^[Non-NBR](^)l\ (10.4) 
meM 

These monitors provide an estimate of how well a set of associated 
weights or nodes of the adaptive network are being overlaid on 
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corresponding relative elements of the presented training data set. In other 
words, the monitors indicate how well the network represents the training 
data. However, when these monitors are deployed into the IFCS, it will be 
complicated to infer a reasonable measure of confidence by looking at all 
four monitors. Thereby, there needs to be a single confidence measure of 
the DCS network. To achieve this, the monitor values from the previously 
mentioned four monitors are combined using Murphy's rule based on 
Dempster-Shafer framework [Murphy 1998, Murphy 1996] Mid Fuzzy 
Inference System to form a single measure of confidence. The confidence 
measure indicates whether or not the output from the neural network's 
learning can be trusted over time. 

2.1 Murphy's Rule of Combination 

Dempster-Shafer theory [Smets 1990] is a general form of Bayesian 
theory. Bayesian theory requires knowing all of the probability laws in 
order to combine evidence and make a prediction. In spite of Bayesian 
theory, which has only propositions that are known as possible and 
propositions known as impossible, Dempster-Shafer theory adds 
propositions that are unknown. There are many rules of combination that 
are based on the Dempster-Shafer framework. In order to explain the 
Murphy's rule, some basic definitions and axioms from the Dempster-Shafer 
theory are needed. 

Propositions of an event are called elementary propositions 
{^1,̂ 2 V9^«} • These events must be exclusive. The finite set of the 
elementary propositions 0 = {0^} is called the frame of discernment. The 
power set 2® includes all possible propositions of interest. The belief in 
propositions is expressed with a basic probability assignment function: 
m : 2® —> [0,lj. The number m{0.) represents the total belief assigned to 
proposition 0.. The basic probability assignment function must satisfy the 
following axioms: m {A) > 0, V 6 2®, m{0) = 0 and ^^^^^ ^(^) = ^ • 

Dempster proposed a rule of combination, assuming that all sources of 
evidence are independent: 

Since the monitors from the DCS network that are used as sources of 
evidence are not independent, Dempster's rule cannot be applied. For such 
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cases Murphy [1996] provides a rule that solves this problem: 

m 
n5 , ^0 f{^i^i hi^ i )) 

where f[m[A. )m[B.)) = [m{A. )m[B.)]" (0.0 < w < 1.0) . Function/is 
referred to as the belief revision function. When n=\, this rule becomes 
Dempster's rule. 

In the monitors discussed here, each monitor tells a different error. 
These errors are normalized to values between zero and one (see Section 2.3 
for details), which is used as beliefs that carry the information of how bad 
the learning process is of the DCS network. Therefore, from each monitor 
there are two propositions E and C with their beliefs: m{E) (which is the 
normalized error value) and m{C) = 1 - m{E) (which is the belief of how 
confident one is or how much one should trust the learning process of the 
DCS network). The final form of Murphy's rule is: 

{xyY ^{X-xYiX-yr 
x,ye (0,1); n e [0,1]; n = const i^^-^) 

m(x,y)e (0,1) 

where x and j ; are values of m(E) from two monitors. 
There are many ways of combining the sources of evidence. The 

following way is chosen, assuming there are k sources of evidence (with 
assigned beliefs ai,a2,.--?<^A: ^ (04))-

comb(l) = a^ (10 8) 
comb (/) = m{comb (i - 1), a^), / = 2,..., k 

where comb{k) will give the final result expressed as a combined error 
belief. Fig. 10-2 is a graphical representation of this combination. The 
result that is of interest is one - comb{k), which is a measure of confidence. 

If there are more than two beliefs, different orders of combining them 
give different results (since associadvity does not hold for the belief revision 
Sanction y). The minimum and the maximum values of comb(k) should be 
obtained, i.e., to find what ordering of the beliefs will give these values. The 
simplest approach to do this is to calculate comb(k) on all permutations and 
determine the minimum and the maximum. However, this approach is not 
efficient with running time 0{k!). 
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Figure 10-2. Combination Method 

A claim is made here that if the beHefs are ordered in increasing order, 
comb(k) will give the maximum value, and if they are in decreasing order it 
will give the minimum value. This reduces the running time 
toO(^-log(^)). 

2.2 Fuzzy Inference System 

Another approach for data fusion on the DCS monitors is based on fuzzy 
logic. For the system discussed here, the Mamdani model [Mamdani 1975] 
is used, which is one of the most widely used fuzzy models in practice. It is 
a Fuzzy Rule-based model. The rules are very simple and are based on 
linguistic variables, for example: IF x is Small AND y is High THEN z is 
Medium. Each input in the system is partitioned into regions. A region 
corresponds to a membership function (e.g.. Small, Medium, etc.). The same 
is applied to the output variables. 

In our system the monitors are normalized to values between zero and 
one (see Section 2.3 for details). Since the monitors are error functions, 
small errors (closer to zero) mean that the DCS network state is good and 
large errors (closer to one) mean that the DCS network state is bad. The first 
try was with simple triangular membership functions. Later, the system was 
improved with smooth functions that resulted in smoother transitions in the 
output. Three regions were used to partition (Fig. 10-3) the input space into 
good (with Z-shaped curve membership function), normal (with Gaussian 
curve membership function), and bad (with S-shaped curve membership 
function). 
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Figure 10-3. Input Variable 

The output, which is a fusion of all inputs, means how much confidence 
or belief there is that the network has learned well. Fig. 10-4 shows the 
partitioning of the output into five regions: very-low (with Z-shaped curve 
membership function), low, medium, high (the last three regions with 
Gaussian curve membership function) and very-high (with S-shaped curve 
membership function). The lowest value, very-low, tells us that something is 
going wrong with learning process of the DCS network. Similarly, the 
highest value very-high means that the DCS network learning process is very 
well. The defuzzification method used to obtain a numerical value is 
centroid, and one example of the fuzzy rules that can result is shown in Fig. 
10-5. 
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Figure 10-4. Output Variable 

4. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is normal) and (Q-SBU-E is bad) then (confidence is veryjow) (1) 
5. If (QE is bad) and (Q-NBR-E is bad) and (Q-NGN-NBR-E is normal) and (Q-SBU-E is normal) then (confidence is low) (1) 
6. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is normal) and (Q-SBU-E is good) then (confidence is medium) (1) 
7. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is bad) then (confidence is low) (1) 
8. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is normal) then (confidence is medium) (1) 
9. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is good) then (confidence is medium) (1) 

Figure 10-5. A Set of Fuzzy Rules Used in the Fuzzy Inference System 
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As can be seen from Fig. 10-6 on the next page, the mesh plot of the 
control surface of the fuzzy inference system is not a flat surface. For the 
inputs that are used to plot this surface, when the error values (jc and y axes) 
are close to zero, there is a high confidence measure (z axis). This is 
followed by a smooth decrease in the confidence measure as the error values 
get closer to one. 

Figure 10-6. Mesh Plot of the Control Surface of the Fuzzy Inference Engine 

2.3 Experimental Studies 

The experimental data consists of data sets collected from an F-15 flight 
simulator. The tested flight-modes consisted of seven failure modes (five 
control failure modes and two surface failure modes) and two no-failure, or 
nominal, modes. The studies presented in this section consist of the result 
from theC^ DCS network. This network learns the stability and control 
derivatives associated with pitching moments due to normal force. Four 
independent variables, in addition to the three dependent C^ derivatives, are 
used as inputs into the C^ DCS network. 

Neural network independent variable inputs are: mach, altitude, alpha 
(angle of attack), beta. The neural network dependent variable inputs are: 
AC^^^, AC^^. and AC^^. The outputs used for data fusion are the four 
monitor values. In each time step these values are normalized to values 
between zero and one using the current maximum from each monitor as the 
normalizing base. Usually this maximum is at the beginning of the learning 
process. 
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2.3.1 Learning During Flight-failure Mode 

Fig. 10-7 shows the four monitor values as obtained in a real-time 
manner for the control failure mode - locked left stabilator stuck at +J 
degrees. The failure was induced into the simulator at the 600̂ ^ time frame 
(corresponds to the 100* time frame for the monitor values). All of these 
monitors indicate a spike in their values at the time of failure, i.e., 100* time 
frame. Note that Monitors 1 and 3 show a significant spike in their values 
compared to Monitors 2 and 4. This demonstrates the need for having a 
multiple monitor-based validation scheme. 

Monitor 1:0-BMU-E Monitor 2 0-NBR-E Monitor 3: aNON-NBR-E 

100 100 
timn^TTIH? 

Monitor 4: aS8LI-E 

100 2001 

Figure 10-7. Four Monitors for Control Failure Mode 

The corresponding confidence measures are obtained using the 
previously described methods of data fusion and are shown in Fig. 10-8. 
Fig. 10-8 on the next page shows the minimum and maximum values of the 
confidence measure acquired from the method based on Murphy's rule. Fig. 
10-8 also shows the difference between the maximum and minimum values. 
At the time of failure (100̂ *̂  monitor time frame) the minimum and 
maximum values decrease, which indicates that the neural network cannot 
be trusted at that instant in time. Other useful information is indicated from 
the difference between the maximum and the minimum, which is increasing 
rapidly at the 100̂ ^ time frame. In Fig. 10-8 the confidence measure 
obtained from the developed fuzzy inference system is shown. The 
confidence measure provided by the fuzzy inference system shows similar 
behavior, decreasing significantly at the 100̂ ^ time frame and meaning that 
the network cannot be trusted during this time. 
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Figure 10-8. a) Confidence Measure from Murphy's Rule; b) Confidence Measure from 
Fuzzy Inference System 

2.3.2 Learning During Flight No-failure Mode 

The results from the four monitors during the neural network's learning 
under no-failure flight-mode are shown in Fig. 10-9. All monitors during the 
learning process show a steady descent with no spikes, indicating no 
abnormal neural network behavior. 

Monitor 1. Q-BMU-E Monitor 2. Q-NBR-E Monitor 3: Q-NON-NBR-E 
- - . O.C6r 

Monitof 4; 0-SBU-E 

100 
time«S!20Hz 

Figure 10-9. Four Monitors for No-failure Mode 

Fig. 10-10 shows the confidence measure obtained from fusing these 
monitor values from both methods: fuzzy logic and Dempster-Shafer. From 
the method based on Murphy's rule, the minimum and the maximum values 
of the confidence measure are high and stay around the same value. Their 
difference is very small during the entire learning process. The fuzzy 
inference system shows similar results by providing a high confidence 
measure. 
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Figure 10-10. a) Confidence Measure from Murphy's Rule; b) Confidence Measure from 
Fuzzy Inference System 

SUMMARY 

A novel approach for validation of soft computing systems (neural 
network) embedded in safety-critical online self-adaptive systems is 
presented in the form of run-time risk assessment methodology. The 
approach is based on run-time operational monitoring of the neural network 
and data fusion techniques for combining outputs from various monitors. 
The run-time monitoring is based on the stability analysis of dynamic 
systems similar, in principle, to the Lyapunov analysis. The outputs from 
various monitors are fused together to form a single measure of confidence 
from the data fusion techniques of Dempster-Shafer (Murphy's rule of 
combination) and Fuzzy Inference System. 

The developed concept of run-time monitoring and data fusion can serve 
as a powerful tool for assessing risk in real-time and a complementary means 
of validating on-line self-adaptive systems in cases where traditional 
validation techniques fail or cannot be applied. Using the data collected 
from an F-15 flight simulator, heuristic evidence is provided that supports 
the prospects of using run-time monitoring and data fusion techniques to 
form a run-time risk assessment methodology. This work can be viewed as a 
step towards a solution to the V&V of online self-adaptive systems. This is 
a complex yet very important problem facing the dependability research 
community. It is believed that the application boundaries for adaptive and 
intelligent systems will widen as the underlying software/system verification 
and validation theory becomes better understood and derived techniques 
achieve a higher level of maturity. Current work on this approach consists 
of fine-tuning the fiizzy inference system (modifying rules, membership 
functions) and providing a signaling system, similar to traffic control system 
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that can warn the pilot/aircraft validation engineers of an imminent threat 
due to neural network misbehavior. 
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