

Methods and Procedures for the
Verification and Validation of

Artificial Neural Networks

Methods and Procedures for the

Verification and Validation of

Artificial Neural Networks

edited by

Brian J. Taylor
Institute for Scientific Research, Inc.

Fairmont,WV, USA

1 3

Brian J. Taylor

Institute for Scientific Research, Inc.

320 Adams Street

Fairmont, WV 26555-2720

USA

btaylor@isr.us

Library of Congress Control Number: 2005933711

METHODS AND PROCEDURES FOR THE VERIFICATION AND

VALIDATION OF ARTIFICIAL NEURAL NETWORKS

Edited by Brian J. Taylor

Institute for Scientific Research, Inc.

ISBN-13: 978-0-387-28288-6

ISBN-10: 0-387-28288-2

e-ISBN-13: 978-0-387-29485-8

e-ISBN-10: 0-387-29485-6

Printed on acid-free paper.

 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if the are not identified as such, is not to be taken as

an expression of opinion as to whether or not they are subject to

proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11539124, 11570691

springeronline.com

Contents

Contributing Authors vii

Preface ix

Acknowledgments xi

Background of the Verification and Validation of Neural Networks 1

Augmentation of Current Verification and Validation Practices 13

Risk and Hazard Analysis for Neural Network Systems 33

Validation of Neural Networks Via Taxonomic Evaluation 51

Stability Properties of Neural Networks 97

Neural Network Verification 109

Neural Network Visualization Techniques 163

Rule Extraction as a Formal Method 199

Automated Test Generation for Testing Neural Network Systems 229

Run-Time Assessment of Neural Network Control Systems 257

VI

About the Authors 270

Index 275

Contributing Authors

Brian J. Taylor
Marjorie A. Darrah
Laura L. Pullum
Kareem Ammar
James T. Smith
Spiro T. Skias
Institute for Scientific Research, Inc., Fairmont, WV

Bojan Cukic
Sampath K. Yerramala
Martin Mladenovski
Lane Dept. of CSEE, West Virginia University, Morgantown, WV

Edgar J. Fuller
Dept. of Mathematics, West Virginia University, Morgantown, WV

Preface

Artificial neural networks are a form of artificial intelligence that have
the capability of learning, growing, and adapting within dynamic
environments. With the ability to learn and adapt, artificial neural networks
introduce new potential solutions and approaches to some of the more
challenging problems that the United States faces as it pursues the vision of
space exploration. For instance, one of the areas of potential problems is in
air and ground vehicle control. To be successful on manned missions to
Mars and the Moon, intelligent adaptive systems, such as neural networks,
may be needed to assist in crew operations to accommodate an ever
changing environment. The major obstacle to deploying such highly
complex systems is the verification and validation of these systems.

The need is being recognized by organizations such as NASA, that the
supporting function of verification and validation must be brought to bear
for neural network systems to gain the necessary acceptance within their
respective problem domains. As the facility responsible for assuring
software safety, reliability, and quality of programs and missions, the NASA
Independent Verification and Validation (IV&V) Facility will be
increasingly challenged to certify and evaluate software systems that contain
neural network technologies. The NASA IV&V Facility has recognized the
need and importance of neural network technology as it is becoming more
feasible for use in future space applications. To address this need, the
NASA rV&V Facility sponsored the Institute for Scientific Research, Inc.
(ISR) under Research Grant NAGS-12069 through the NASA Goddard
Space Flight Center, to research and develop methodologies for the
independent verification and validation of artificial neural networks.

This book is a result of three years of research conducted for the NASA
IV&V Facility and examines some of the more promising methods and
procedures for the verification and validation of artificial neural networks
and adaptive systems. This book does not endorse artificial neural networks
as the perfect solution, but instead disseminates the methods and procedures
for verifying and validating these highly complex systems so that they can
be used in safety-critical and mission-critical applications. The methods and
procedures presented in this book were chosen because of their applicability,
technology maturity level, technical feasibility, and usability in the
verification and validation of neural networks.

The NASA IV&V Facility is working to be at the forefront of software
safety and assurance for major NASA programs. This book is an excellent
tool for preparing NASA IV&V and other V&V practitioners to assure
neural network software systems for future NASA missions.

Mr. Nelson Keeler

Director, NASA Independent Verification and Validation Facility

Acknowledgments

The research described in this book was sponsored by NASA Goddard
Flight Research Center through the NASA Independent Verification &
Validation (IV&V) Facility, under Research Grant NAG5-12069. The
NASA IV&V Facility greatly contributed to the successful completion of
this project. Special thanks should be given to Markland Benson, Christina
Moats, Ken McGill, and Nelson Keeler for their support, technical direction,
and suggestions throughout the project.

Special mention should be given to NASA Dryden Flight Research
Center and NASA Ames Research Center whose previous and ongoing
research in this area has been a motivating influence on this work.

Chapter 1

BACKGROUND OF THE VERIFICATION AND
VALIDATION OF NEURAL NETWORKS

Spire T. Skias
Institute for Scientific Research, Inc.

\. INTRODUCTION

This book is an introduction to the methods and procedures that have
proven to be successful for the verification and validation (V&V) of
artificial neural networks used in safety-critical or mission-critical
applications. Although the methods and procedures discussed are oriented
toward artificial neural networks, some of them have also shown to be
usable for V&V of generic adaptive artificial intelligent systems.
Throughout this book, an example of a safety-critical and mission-critical
intelligent flight control system is used to demonstrate the applicability of
the presented methods and procedures. This chapter provides a brief
introduction to artificial neural networks, verification and validation, and an
overview of the Intelligent Flight Control Systems (IPCS) project, which
was used as the test scenario for the methods and procedures in this book.

1.1 What are Artificial Neural Networks?

An artificial neural network, or simply neural network, is a type of
artificial intelligence (computer system) that attempts to mimic the way the
human brain processes and stores information. It works by creating
connections between mathematical processing elements, called neurons.
Knowledge is encoded into the network through the strength of the
connections between different neurons, called weights, and by creating
groups, or layers, of neurons that work in parallel. The system learns

2 Chapter 1

through a process of determining the number of neurons or nodes and
adjusting the weights for the connections based upon training data. In
supervised learning, the training data is composed of input-output pairs. A
neural network tries to find a function which, when given the inputs,
produces the outputs. Through repeated application of training data, the
network then approximates a function for that input domain. There are two
main types of neural networks,//xe^i (non-adaptive), and dynamic (adaptive).

Fixed neural networks, sometimes referred to as Pre-Trained Neural
Networks (PTNN), are those that have undergone training and then become
set. The internal structure of the network remains unchanged during
operation. After training is complete, all weights, connections, and node
configurations remain the same, and the network reduces to a repeatable
fijnction. A common use of a fixed neural network might be a classification
system to identify malformed products on a manufacturing line where the
definition of an undesirable characteristic would not change and the network
would be expected to perform the same classification repeatedly.

Dynamic neural networks, sometimes referred to as Online Learning
Neural Networks (OLNN), are never fixed in that the system continues to
develop throughout its life. An OLNN is continuously adapting to current
data, changing its internal structure of neurons and weights. OLNNs are
employed in situations where a system must learn new information while in
use. This is usefiil where unforeseen scenarios occur, such as aircraft
failures, or when input domains change over time, such as stock market
analysis.

1,2 Historical Highlights of Artificial Neural Network
Development

The origin of artificial neural networks stems from research of the human
brain. The basic component of the brain, the neuron, was discovered in
1836. In addition to a nucleus, the neuron cell has two specialized
appendages: dendrites, which receive impulses from other neurons, and an
axon to carry signals to other neurons. The gap between dendrites and axons
is called a synapse as shown in Fig. 1-1.

Functionally, the neuron acts as a multi-input/single-output unit. A
single neuron can have several neighbors connect to it and bring in electrical
signals across the synapses and through the dendrites while it alone can
connect to one other neuron via the axon. Within the brain, all of the
neurons connect to one other via, and work together in, what can be
considered a network of neural cells.

Background of the Verification and Validation of Neural Networks

^

Axon (Carries •, t^
signals away) '\^J^

Dendrites (Carry
signals in)

Synapse size changes in
response to learning

Figure 1-1. Diagi'am of a Biological Neuron

The neuron performs a summation of the electrical signals arriving at its
dendrites. This summation is compared against a threshold to determine if
the neuron shall excite (referred to as firing), resulting in a generation of a
signal to the dendrite of another neuron. In the late 19̂*̂ century, input
signals into a neuron were found to be subject to attenuation in the synapses,
meaning the synapses helped to control the strength of the electrical signal
passed into the neuron.

The modern era of neural network research and development began with
the classic work of W.S. McCulloch, a psychiatrist and neuroanatomist, and
W. Pitts, a mathematical prodigy, associated with the University of Chicago.
With their classic 1943 paper, "A Logical Calculus of the Ideas Immanent in
Nervous Activity," they united the fields of neurophysiology and
mathematical logic [McCulloch 1943]. In particular, they showed that a
model of a biological neural network could, in principle, calculate any
computable function.

In 1949, Donald Hebb, a psychologist at McGill University in Canada,
published a novel postulate of neural learning: the effectiveness of a synapse
to transfer a signal between two neurons is increased by repeated activation
across that synapse [Hebb 1949]. This theory, also known as "Hebb's
Rule," explained the physiological concept of synaptic modification, the
increase or decrease of a neuron's response to electrical sdmulus. This
corresponds to the use of weighted connections between the neurons of an
artificial neural network and gave rise to the use of techniques in adjusting
these weights during learning.

Hebb's work influenced Marvin Minsky, who would later go on to found
the MIT Artificial Intelligence Laboratory in 1959. While a student at
Princeton in 1954, Minsky developed his thesis on "Theory of Neural-

4 Chapter 1

Analog Reinforcement Systems and Its Application to the Brain-Model
Problem" [Minsky 1954]. Minsky's book Computation: Finite and Infinite
Machines [Minsky 1967] extended the 1943 results of McCulloch and Pitts
by explaining them in the context of automata theory and the theory of
computation.

During this same period, Frank Rosenblatt introduced as a new approach
to pattern recognition, the perceptron, culminating in his perceptron
convergence theorem [Rosenblatt I960]. The perceptron represented a
significant step over previous attempts at artificial neural networks because
it introduced the idea of auto-learning frequently occurring patterns. In the
same year, Bernard Widrow and Marcian Hoff introduced the least mean-
square algorithm and formulated the ADaptive LINear Element (ADALINE)
[Widrow I960]. The AD ALINE network used weighting on the inputs into
a neuron for pattern classification; it also could take continuous data instead
of the predominantly binary inputs used by other networks, including the
perceptron.

But even with these new emerging network architectures, the research
field was about to collapse. In their book "Perceptrons" [Minsky 1969],
Minsky and Seymour Papert mathematically demonstrated some
fundamental limitations on single-layer networks like the perceptron. They
also expressed their doubt that multi-layer versions could overcome them.
These limitations deflated the hype surrounding the great potential of neural
network technology and led to the decline of continued funding for neural
network research across the next couple decades (i.e. the Dark Ages, in Fig.
2-1).

Even though interest in neural networks waned, there were several
researchers still working actively in the field. In the 1970s, von der
Malsburg [von der Malsburg 1973] introduced the Self-Organizing Map
(SOM). Later, with D.J. Willshaw [Willshaw 1976], he further developed an
association of SOMs with topologically ordered maps in the brain. Then in
1980, Grossburg built upon this with a new principle of self-organization
known as adaptive resonance theory (ART), which basically involves a
bottom-up recognition layer and a top-down generative layer [Grossburg
1980]. Later, in 1982, Tuevo Kohonen introduced the development of
SOMs based on one- or two-dimensional lattice structures [Kohonen 1982].

In 1982, J.J. Hopfield introduced the use of an energy function in
formulating a new way of understanding the computation performed by
recurrent networks with symmetric synaptic connections [Hopfield 1982].
This new perspective, based on energy principles, resulted in attracted many
researchers from other scientific disciplines, such as physics, to explore and
contribute to the field of neural networks. The Hopfield paper also was the

Background of the Verification and Validation of Neural Networks 5

first to explicitly make the case for storing information in dynamically stable
networks.

In 1983, Kirkpatrick, Gelatt, and Vecchi [Kirkpatrick 1983] introduced a
new principle for solving combinatorial optimization problems called
simulated annealing, which is rooted in statistical mechanics. Building upon
this approach, Ackley, Hinton, and Sejnowski [Ackley 1985] developed a
stochastic machine known as the Boltzmann machine, which was the first
successfijl realization of a multilayer neural network. This work with the
Boltzmann machine provided the foundation for the linking of neural
networks to belief networks [Pearl 1988] and, in particular, for the
development of sigmoid belief networks by Neal [Neal 1992].

In 1986, D.E. Rumelhart and J.L. McClellan, in their monumental two-
volume work Parallel Distributed Processing: Explorations in the
Microstructure of Cognition [Rumelhart 1986], introduced the back-
propagation algorithm, which has emerged as the most widely used learning
algorithm for training multilayer perceptrons.

In 1988, D.S. Broomhead and D. Lowe introduced an alternative to
multilayer perceptrons with their layered feed-forward networks based on
radial basis functions (RBF). This work has led to significant efforts to link
the design of neural networks to the areas of numerical analysis methods and
linear adaptive filters [Broomhead 1988].

For a more comprehensive historical analysis of significant achievements
in the field of neural networks, the reader is referred to the "Historical
Notes" section at the end of Chapter 1 in Simon Haykin's Neural Networks:
A Comprehensive Foundation [Haykin 1999].

1.3 Neural Network Applications

NASA [DFRC 2004], the Department of Defense (DoD) [Johnson 2002],
the Department of Energy (DOE) [Basher 2003], the Federal Aviation
Administration (FAA) [Steck 2003], the Food and Drug Administration
(FDA) [Rodvold 2001], and private companies such as Goodrich Aerospace
[6] are currently considering approving neural networks for use in mission-
and safety-critical systems. These agencies are encountering neural
networks being utilized in applications such as flight control systems,
medical devices, and process management systems. These high assurance
neural network applications require rigorous verification and validation
techniques. Given that traditional techniques are not entirely suitable for the
V&V of neural networks, new and practical techniques and supporting tools
must be developed.

One application of particular interest is the Intelligent Aircraft. There are
several organizations investigating the use of neural networks in aircraft.

6 Chapter 1

though the majority of this work remains in the realms of research and
experimental aircraft. The trend for this type of technology has been to start
within research, apply the concepts to military vehicles, and then finally
transition the use of new technology to commercial aircraft. An excellent
example of this trend is the Intelligent Flight Control Systems (IPCS) Project
being conducted at the NASA Dryden Plight Research Center (DPRC).

1.3.1 Intelligent Flight Control Systems

The IPCS Project is a collaborative effort among the NASA DPRC, the
NASA Ames Research Center (ARC), Boeing Phantom Works, ISR, and
West Virginia University (WVU).

The goal of the IPCS Project is to develop and flight-demonstrate a flight
control concept that can efficiently identify aircraft stability and control
characteristics using neural networks, and utilize this information to
optimize aircraft performance in both normal and simulated failure
conditions. A secondary goal is to develop the processes to verify and
validate neural networks for use in flight-critical applications. The flight
project results will be utilized in an overall strategy aimed at advancing
neural network flight control technology to new aerospace systems designs
including civil and military aircraft, reusable launch vehicles, uninhabited
vehicles, and space vehicles.

The intelligent flight control system was first tested in flight on the
NASA P-15 Advanced Control Technology for Integrated Vehicles
(ACTIVE) aircraft. This aircraft, shown in Pig. 1-2, has been highly
modified from a standard P-15 configuration to include canard control
surfaces, thrust vectoring nozzles, and a digital fly-by-wire flight control
system. The use of canard surfaces, along with simulated stuck stabilator
deflections allows the IPCS program to simulate different actuator failures
during flight.

Two types of neural networks make up the components to the flrst
generation (GENl) intelligent flight control scheme. A pre-trained neural
network component provides the baseline approximation of the stability and
control derivatives of the aircraft. This neural network is composed of 34
separate multilayer perceptrons, with some of the networks' outputs
combined to form the derivatives. The networks were trained with two
different training techniques: a modification of Active Selection and the
Levenberg-Marquardt algorithm. The second neural network integrated into
the GENl intelligent flight control system is a highly advanced neural
network called a Dynamic Cell Structure (DCS). The DCS is a member of a
group of neural networks known as self-organizing maps (SOMs). The DCS
algorithm, implemented in the GENl system by NASA ARC Jorgensen

Background of the Verification and Validation of Neural Networks 1

[1997], was originally developed by Bruske and Sommer [1994] and is a
derivative of work by Fritzke [1994] combined with competitive Hebbian
learning by Martinez [1993].

Figure 1-2. NASA IPCS Project P-15 ACTIVE Aircraft

Flight tests of the online learning network will demonstrate a flight
control mode for a damaged fighter or transport aircraft that can return the
aircraft safely to base.

Since ensuring pilot and aircraft safety along with overall mission
success is a success criterion for this program, each of the participating
organizations contributed toward the development of a V&V guide
[Mackall 2002], "Verification and Validation of Neural Networks for
Aerospace Systems." This guide was written to assist NASA DFRC in the
development of research experiments that use neural networks. It is a first
approach toward extending existing V&V standards to cover fixed and
adaptive neural networks.

1.4 Verification and Validation

Before software finds its way into safety-critical applications, users of
these systems must be assured of highly reliable operation. In non-critical
systems, failure may result in loss of work, profits, or mere inconvenience.
In systems where high reliability is a requirement, failures can result in
massive destruction of loss of human life.

One industry with a high reliability/low failure requirement is aviation.
Civilian airliners require highly reliable systems to transport millions of

8 Chapter 1

passengers daily. The Federal Aviation Administration, the ruling authority
in the U.S., has mandated a failure rate of less than 10-9/hour as the
acceptable occurrence of failures within aircraft systems. This means that
for every billion hours (roughly 114,000 years) of operation, only one failure
should occur.

Other industries with high demand for reliability have adopted similar
guidelines for acceptable failure rates. Requirements for monitoring systems
for nuclear power plants are lO""̂ failures per hour of operation. The
telephone industry commonly cites a limit of 10"̂ failures per hour
(Customers expect flawless operation from their telephone service provider,
so the failure rate is set even higher than the nuclear power industry
guidelines). Phone service should not be interrupted more than two minutes
per year, though experience says this is difficult to achieve.

One way to assess the correctness and reliability of a software project is
to utilize the practices of verification and validation. V&V methods attempt
to answer two questions concerning the entire software lifecycle of a project:

Verification: Is the product being built right?
Validation: Is the right product being built?

Verification looks at the end result of the software development process
and evaluates the correctness of the software. It seeks to answer questions
concerning the adequacy of the processes that went into the system
development. Verification also analyzes the outcome of tests conducted on
the system that result in metrics that measure the system's expected
reliability.

Validation examines the system from a different perspective. Given the
original intended uses and needs for the system, and all of the changes and
modifications made to those specifications during the software development,
does the end product still ftilfill those requirements? Validation seeks to
ensure that all requirements are met throughout the development of the
system. These can include statements on system reliability, failure rates, and
other issues important in safety-critical systems.

The software lifecycle can be separated into several stages: concept,
requirements, design, implementation, testing, operation, and maintenance.
Due to the visibility of the results from testing, a common misconception is
that V&V occurs only during the testing. However, to be adequate in any
kind of system development each stage must contain its own assurance
practices.

The Institute of Electrical and Electronics Engineers published IEEE
Standard 1012-1998 (and 1012a-1998) to provide a V&V template for
software developers. The IEEE Standard for Software Verification and

Background of the Verification and Validation of Neural Networks 9

Validation can be used across all processes, activities, and tasks of the
software lifecycle. The standard identifies key activities that can be
conducted within each stage, such as documentation and assessments of
risks, hazards, and requirements traceability from stage to stage.

Current V&V techniques, including those described within the IEEE
standard, are not well equipped to handle adaptive systems like neural
networks. The use of neural networks, especially within safety-critical
systems, has been increasing over the past 15 years because they prove very
useful in systems that contain ill-defined non-linear functions.

Instead of being programmed and designed in a traditional sense, neural
networks are "taught" using a learning algorithm and a set of training data.
Because of their adaptation, neural networks are considered a "black box".
Its response may not be predictable or well defined within all regions of the
input space.

Of particular concern is the trustworthiness and acceptability of dynamic
neural networks that continue to adapt or evolve after the system is
deployed. While some OLNNs may be given a priori knowledge of their
input domain, the adaptation that they undergo offers no guarantee that the
system is stable or continues to meet the original objectives.

The V&V technique commonly applied to neural networks is brute force
testing. This is accomplished by the repeated application of training data,
followed by an application of testing data to determine whether the neural
network is acceptable. Some systems may undergo intensive simulations at
the component level and perhaps at the system level as well. However, these
may be no better than "best guesses" toward a system analysis.

In assessing a safety-critical neural network system, a V&V expert must
know what to look for with a neural network and how to analyze the results.
Many questions face the analyst regarding the network's implementation:

• Has the network learned the correct data, or has it learned something else
that correlates closely to the data?

• Has the network converged to the global minimum or a local minimum?
• How will the network handle situations when data is presented to it

outside of the training set or unique from previous training data?
• Is there a quantifiable metric to describe the network's "memory" or data

retention?
• Is the network making use of the right set of input parameters for the

problem domain?

One oft-cited story [Skapura 1996] recounts a neural network pattern
recognition system that was being developed for the army to identify the
presence of enemy tanks. Once trained, the system appeared to work

10 Chapter 1

perfectly, able to identify tanks in the testing samples and in a completely
separate data set. When taken to the field, however, the system failed. After
analysis, it was discovered that the system was actually identifying qualities
of the pictures it was being presented with: every photo in the test set that
had a tank hidden within it was taken on a cloudy day; coincidentally, every
photo without a tank was taken on a clear day. The system had learned to
identify cloudy skies and not tanks. This bias had been undetected.

It is stories like this that push the software industry to establish V&V for
neural network processes. As the development of neural networks is often
considered more of an art form than a science, so too might it be said about
V&V of neural networks. Like the IEEE standard, developers need well-
defined practices that they can use in their own systems.

2. SUMMARY

This book is an introduction to the methods and procedures that have
proven to be successftil for the V&V of artificial neural networks used in
safety-critical or mission-critical applications.

There are two types of neural networks discussed in this book, fixed
(non-adaptive) and dynamic (adaptive). Fixed neural networks are trained
before deployment and do not change. Dynamic neural networks learn
during deployment.

Artificial neural networks stem from research of the human brain.
Neural networks are made up of neurons (or nodes), connections, weights,
and layers. The first development of experimental artificial neural networks
dates back to 1943 with research conducted by W.S. McCulloch. Since then,
neural networks have made their way into safety-critical and mission-critical
applications, such as intelligent flight control.

V&V is the formal process by which to test and examine a system for
dependability, reliability, and assurance. Verification tries to answer the
question "Is the product being built right?" Validation tries to answer the
question "Is the right product being built?"

The methods and procedures presented in this book have been evaluated
on a real-world intelligent flight control application for the IPCS project at
NASA DFRC. The IPCS project uses adaptive neural networks to control
and stabilize an P-15 research aircraft in catastrophic conditions for pilot
assistance.

Background of the Verification and Validation of Neural Networks 11

REFERENCES

Ackley, D.H., G.E. Hinton, and T.J. Sejnowski. 1985. A Learning Algorithm for Boltzmann
Machines. Cognitive Science 9:147-169.

Basher, H. and J. S. Neal. 2003. Autonomous Control of Nuclear Power Plants. Report
ORNL/TM-2003/252. Prepared by Oak Ridge National Laboratory for U.S. Department of
Energy.

Broomhead, D.S. and D. Lowe. 1988. Multivariable Functional Interpolation and Adaptive
Networks. Complex Systems 2:321-355.

Bruske, Jorg and Gerald Sommer. 1994. Dynamic Cell Structures. In Proceedings of Neural
Information Processing Systems (NIPS), 497-504.

Dryden Flight Research Center. 2004. Intelligent Flight Control System Project Summary.
http://www.nasa.gov/centers/dryden/news/FactSheets/FS-076-DFRC.html

Fritzke, B. 1994. Growing Cell-Structures - a Self-Organizing Network for Unsupervised and
Supervised Learning. A^ewra/A^e/wor/:5. 7(9): 1441-1460.

Grossburg, S. 1980. How does a brain build a cognitive code? Psychological Review, 87:1-5.
Haykin, S.. 1999. Neural Networks: A Comprehensive Foundation. Second edition. New

York: MacMillan Publishing.
Hebb, D.O. 1949. The Organization of Behavior: A Neurophysiological Theory. New York:

Wiley.
Hopfield, J.J. 1982. Neural Networks and Physical Systems with Emergent Collective

Computational Abilities. In Proceedings of the National Academy of Sciences. 81:3088-
3092.

Johnson, E.N. and Kannan, S.K. 2002. Adaptive Flight Control for an Autonomous
Unmanned Helicopter. Proceedings of the AIAA Guidance, Navigation, and Control
Conference.

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks. NASA Technical Memorandum 112198, NASA Ames Research Center.

Kirkpatrick, S., CD. Gelatt, and M.P. Vecchi. 1983. Optimization of simulated annealing.
Science, 220:671-680.

Kohonen, T. 1982. Self-Organized Formation of Topologically Correct Feature Maps.
Biological Cybernetics. 43:49-59.

Mackall, Dale; Stacy Nelson; and Johann Schumman. 2002. Verification and Validation of
Neural Networks for Aerospace Systems. NASA Dryden Flight Research Center and
NASA Ames Research Center. June 12.

Martinetz, T. M. 1993. Competitive Hebbian Learning Rule Forms Perfectly Topology
Preserving Maps. In Proceedings of International Conference on Artificial Neural
Networks (ICANN) 427-434. Amsterdam: Springer.

McCulloch, W.S. and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5:115-133.

Minsky, M.L. 1954. Theory of neural-analog reinforcement systems and its application to the
brain-model problem. Ph.D. thesis, Princeton University, Princeton, NJ.

Minsky, M.L. 1967. Computation: Finite and Infinite Machines. Englewood Cliffs, NJ:
Prentice-Hall.

Minsky, M.L., and S.A. Papert. 1969. Perceptrons. Cambridge, MA: MIT Press.
Neal, R.M. 1992. Connectionist learning of belief networks. Artificial Intelligence 56:71-113.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan-

Kaufmann.

12 Chapter 1

Rodvold, David M. 2001. Validation and Regulation of Medical Neural Networks. Molecular
Urology5{A)\U\AA5.

Rosenblatt, F. 1960. On the convergence of reinforcement procedures in simple perceptrons.
Cornell Aeronautical Laboratory Report, VG-1196-G-4, Buffalo, NY.

Rumelhart, D.E. and J.L. McClelland, eds., 1986, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1 & 2, Cambridge, MA: MIT Press.

Skapura, David M. and Peter S Gordon. 1996. Building Neural Networks. Addison-Wesley.
von der Malsburg, C. 1973. Self-organization of Orientation Sensitive Cells in the Striate

Cortex. Kybernetik 14:85-100.
Steck, James E., Kamran Rokhsaz, U. J. Pesonen, Sam Bruner, and Noel Duerksen. 2003.

Simulation and Flight Test Assessment of Safety Benefits and Certification Aspects of
Advanced Flight Control Systems. Report DOT/FAA/AR-03/51 prepared for the
Department of Transportation, Federal Aviation Administration.

Widrow, B. and M.E. Hoff, Jr. 1960. Adaptive Switching Circuits. IRE WESCON
Convention Record. 96-104.

Willshaw, D.J. and C. von der Malsburg. 1976. How Patterned Neural Connections Can be
Set up by Self-Organization. In Proceedings of the Royal Society of London Series B
194:431-445.

Chapter 2

AUGMENTATION OF CURRENT
VERIFICATION AND VALIDATION PRACTICES

Kareem Ammar, Laura Pullum, Brian J. Taylor
Institute for Scientific Research, Inc.

1. INTRODUCTION

Many agencies, including the NASA IV&V Facility use the IEEE Standard
for Software Verification and Validation (IEEE 1012-1998) [IEEE 1998] as
a basis for verification and validation (V&V) activities. Standards like IEEE
1012-1998 are sufficient for traditional software development, but are
inadequate for adaptive systems that can change their implementation and
behavior over time. Faults may manifest themselves because of autonomous
changes and this may introduce problems that were not present during
design or testing.

Given the fault handling and other capabilities of neural networks, their
use in the control systems of advanced avionics, aeronautics and other
safety- and mission-critical systems is seriously being pursued. Along with
the capabilities come challenges in the verification and validation (V&V) of
these systems, as well as the need for V&V practitioner guidance. Neural
networks that continue to learn while the system is in operation require
additional steps for proper software assurance.

This chapter highlights research that was performed to determine the
gaps in the traditional standards and guidelines for performing V&V when
applying them to adaptive neural network systems. Previous work in the
area of guidance for the V&V of neural network systems consisted primarily
of efforts by NASA Ames Research Center and NASA Dryden Flight
Research Center [Mackall 2002, 2003]. The NASA reports provide valuable
inputs into what should be done to verify and validate adaptive aerospace
systems. The authors of these reports align their guidance with the ISO/IEC

14 Chapter!

12207 [lEEE/EIA 1998], a standard that addresses the implementation of
general software lifecycle processes, and offer guidance specific to adaptive
aerospace systems.

Based on the research described in this chapter, the Institute for Scientific
Research, Inc. (ISR) has developed a comprehensive guidance document
[ISR 2005] aligned with the IEEE 1012-1998 to assist the V&V practitioner
in evaluating general neural network systems. The goal of the guidance
document is to provide relevant and applicable guidance for the V&V
practitioner when faced with an adaptive system with a neural network
component. This chapter will discuss the approach to the research, gaps
found in the V&V standards when faced with a neural network system to
V&V, and several augmentations to V&V processes to satisfy these gaps.
Specifically, V&V methods are described in this chapter that address
adaptive system requirements, neural network software requirements, neural
network design, enhanced configuration management, modified lifecycle
models, and neural network testing.

!•! Combining Previous Research and Standards

In order to identify what needed to be done to augment current practices
to accommodate the V&V of neural networks, current standards and
practices were examined. The documents examined during the research for
this chapter included: IEEE 1012-1998, the IEEE ISO/IEC 12207, the
NASA Ames and Dryden reports, and a sample software verification and
validation plan (SVVP). (Note that before the release of this book the IEEE
1012 - 2004 became available. The guidance document produced from this
research remains applicable to the majority of this updated standard.)

The first step in the research approach was to create a mapping between
the ISO/IEC 12207 to IEEE 1012-1998. This bi-directional mapping
allowed for gap analysis to be preformed with all available information.

The guidance developed by NASA Ames and NASA Dryden, though
fairly top-level, provided an initial input into this effort. The NASA reports
were aligned with ISO/IEC 12207 standard and so the mapping of ISO/IEC
12207 to IEEE 1012-1998 helped to map the Ames and Dryden guidance to
IEEE 1012-1998. Also, in this step the sample Software Verification and
Validation Plan was examined. The SVVP of the Airborne Research Test
System II (ARTS II) of the Intelligent Flight Control System (IPCS)
[Casdorph 2000, ISR 2003] provided insights into one implementation of a
V&V plan for a neural network system. The IPCS was an excellent case
study as it utilized safety- and mission-critical online adaptive neural
networks. This text contains several examples from the IPCS Program to
illustrate augmented V&V methods.

Augmentation of Current Verification and Validation Practices 15

These mappings were then combined to determine the coverage of the
V&V of neural networks problem space and to form a framework for the
general V&V guidance document. The guidance document is the final
product of the ISR's research initiative. The steps of this research plan,
including intermediate and final results, are illustrated in Fig. 2-1.

IEEE 1012-1998

ISO/IEC 12207

^ 1 j _J

IPCS SWP

1012/12207
Map

Ames, Dryden
Reports

Practitioner
Guidance

>

—

^

Framework
Document

t
ISR IWNN
Research

^
Guidance
Document

Figure 2-1. Research Plan - Interim and Final Results

1,2 Guidance for the Independent Verification and
Validation of Neural Networks

The guidance document, Guidance for the Independent Verification and
Validation of Neural Networks [ISR 2005], outlines general augmentations
to lifecycle processes to assist the V&V practitioner. The guidance
document provides a detailed listing of all IEEE 1012-1998 V&V tasking
and provides augmentations for the V&V neural networks for every task.
The guidance document also introduces novel V&V tasks when
augmentations to IEEE 1012-1998 tasks are not sufficient. Finally, the
guidance provides supporting examples from IPCS. In summary, the
guidance document provides assistance to the V&V practitioner in designing
V&V methodologies for neural networks.

The guidance document is generally aligned with the IEEE 1012-1998 in
terms of section enumeration. The alignment provides the V&V practitioner
the ability to quickly reference information on specific areas of interest. The
document is organized into five sections. Section 1 is the overview of the
document. Section 2 contains the important references for the document.
Section 3 contains definitions, abbreviations, and conventions. Section 4

16 Chapter 2

provides a summarized list of areas of consideration for neural
network/adaptive systems. Section 5 provides detailed guidance for all
lifecycle processes, activities and tasks related neural network and adaptive
systems.

For a few tasks, no significant the guidance was needed. For many tasks,
additional guidance is required to address the adaptive system. In some
instances the guidance document provided additional V&V tasks that were
not found in IEEE 1012-1998. These include Neural Network Design
Evaluation, Adaptive System and Operational Monitoring Performance
Assessment, Periodic Test Execution and Verification, Proposed Knowledge
Change Assessment, and Configuration File Change Assessment.

2. AUGMENTATIONS TO CURRENT V&V
STANDARDS FOR ADAPTIVE SYSTEMS

The remainder of this chapter addresses several augmentations to the
V&V processes. Discussions on specific techniques can be found in later
chapters.

As a note, V&V processes are tailored to specific applications through
the selection of software integrity levels to plan for appropriate V&V
tasking. The additional methods outlined in this chapter are not intended to
replace existing processes, but are designed to provide suggestions to the
V&V practitioner to augment an established V&V process to address
specific characteristics of neural networks. Use of the following techniques
should be based upon assigned software integrity levels, and thus the safety-
and mission-criticality level of the system. This section does not try to
identify at what level these techniques should be employed. V&V
practitioners should also be aware that many of these techniques mentioned
here still maturing, and the cost associated with developing the technique to
a technology readiness level usable by the project could highly influence
how quickly the project might adopt the technique.

2,1 Enhanced Configuration Management for Neural
Networks

Typically, configuration management identifies configuration items,
implements version control upon baselined configuration items, and
describes processes to establish new baselines. A configuration item is
usually software, documentation, or data. In IEEE 1012-1998, configuration
management assessment of a project is conducted by determining the

Augmentation of Current Verification and Validation Practices 17

completeness and adequacy of documentation produced that describe the
configuration management process. Since adaptive systems have an added
component of knowledge that is not present in conventional software, the
configuration management processes must describe the methods neural
networks use to obtain knowledge as well as the neural network knowledge
itself

The neural network design is often an iterative process. The process
cycles through the steps of design-train-test multiple times. The neural
network undergoes changes as it attempts to learn what the system designers
intend. If this process is not tracked via configuration management, the
project may lose the ability to repeat the design. Neural network validation
techniques such as cross validation or bootstrapping should also be tracked
through configuration management.

Neural network developers can also choose to modify the structure of the
neural network. Based upon the evaluation of neural network performance, a
designer might want to change the architecture, add additional neurons and
neuron layers to the architecture, or change the algorithms the network uses
to learn or grow. Alterations in structure, function, and architecture must be
captured through configuration management.

Pre-trained neural networks rely on training sets to learn. After using a
set of training data, the network begins to adjust internal parameters as it
migrates to learning the features of the training data. The V&V practitioner
should ensure that these training sets are tracked through configuration
management. It is equally important to track the order and frequency in
which training sets are applied to a neural network. Capturing the neural
network during training is also useful. The partial learning in the neural
networks allows for an evaluation of how the network is changing, and
allows for developers to revert to an earlier state if the current neural
network is lacking in performance.

The considerations outlined for pre-trained neural networks can be
applied to online adaptive neural networks. Online adaptive neural networks
are usually initialized with parameters that control variants such as learning
rate and initial weight values. This configuration data should be under
stringent version control, since slight alterations in parameters may
considerably alter the way the neural network learns and performs.

2.2 Adaptive System Requirements Vi&V

The V&V practitioner evaluates the system requirements early in the
lifecycle. The system requirements are validated to ensure they can be
satisfied by the defined technologies, methods and algorithms defined for the

18 Chapter 2

project, and the system requirements verified for their consistency to the
needs of the user.

The feasibility of the requirements determines if the defined technologies
can fulfill the requirements adequately and efficiently. In order to evaluate if
any specifications requiring the use of an adaptive system can meet the
overall system requirements, the practitioner must first evaluate whether an
adaptive system or a neural network is appropriate. There are numerous
types of neural networks. Neural networks may be either supervised or
unsupervised. They may have feed-forward architecture or feedback
architecture. Different neural networks are applied to different problem
domains. While no complete taxonomy exists that defines appropriate neural
network architecture selection, there are general guidelines. These guidelines
are described in Chapter 4.

To establish consistency with the needs of the recipient of the system, the
needs must be clearly documented. For an adaptive system, the user needs
should be represented as goals depicting system behavior and characteristics
from a very high level of abstraction. The high-level goals are first stated in
early documents and are then traceable through systems requirements and
software requirements. To ensure complete coverage of user needs, system
and software requirements are traced to high-level goals.

High-level goals of an adaptive can be difficult to write very early in the
lifecycle. They should address two aspects of the system:

• How the adaptive system acquires knowledge and acts on that knowledge.
(Control)

• What knowledge the adaptive system should acquire. (Knowledge)

Table 2-1 provides an example of high-level goals for an online adaptive
neural network used in an intelligent flight control application. The table
also shows traceability to system requirements. From high-level goals the
developer will be able to understand the nature of the system. Once high-
level goals are established for a project, consistency of the system
requirements to the user needs can then be easily established.

23 Neural Network Software Requirements V&V

Neural networks are based on statistics and mathematics. Requirements
describing neural networks should be written in formal mathematical
notation to describe the functionality of the neural network and intended
knowledge. The V&V practitioner will need to make sure software
requirements are readable and it may be necessary to provide appendices to

Augmentation of Current Verification and Validation Practices 19

software requirement documentation that includes a brief mathematical
background explaining some of the specifications.

Table 2-1. Example of Adaptive System High-Level Goals
High-Level Goal Classification Software

Requirement ID
Software Requirement
Description

The IPCS system
shall include a safety
monitor that safely
limits the online
learning neural
network commands

The IPCS system
shall use an online
learning neural
network to adjust the
feedback errors to
achieve desired
system behavior in
the presence of off
nominal behavior or
failures.

Control 1.1.1.1 [01] The system shall[01] include a
safety monitor that safely
limits the online neural
network commands and
outputs or reverts to the
conventional (non-research)
flight control system in the
case of a command that could
damage the vehicle, precipitate
departure fi*om controlled
flight, or injure or incapacitate
the pilot.

1.1.1.1 [02] The safety monitor shall[02]
limit the authority of the
experimental control laws to
ensure that the control
commands remain within the
allowed loads limits of the
NASA vehicle.
The system shall[01] use an
online learning neural network
to adjust the feedback errors to
achieve desired system
behavior in the presence of off
nominal behavior or failures.

2.2.2.2[02] When the neural network is
off, the adjustment to the
feedback shall[02] be zero, and
the adaptation shall be
disabled.

Knowledge 2.2.2.2[01]

The notion of control requirements and knowledge requirements
discussed within Section 2.2 is used in the next two section to further
explore neural network requirement analysis.

2.3.1 Neural Network Control Requirements

The following paragraphs outline some of the more common areas that
the V&V practitioner may address when assessing completeness of the
software control requirements specifications for an adaptive system or a
neural network.

20 Chapter 2

The convergence time and precision of a neural network should be
outlined in the software requirements. Convergence refers to a global
minimization of the neural network error. The developers should be able to
prove that the adaptive system can converge within a specified amount of
time. This is a necessity for safety-critical systems that adapt in real time.

Many neural networks increase the amount of memory use when running
in real-time. The increase in memory use may be attributed to an increase in
the number of nodes that account for new operational conditions or an
increase in connections or associations between nodes. The software
requirements should specify the precise conditions under which a neural
network will be allowed to grow and constraints on the growth such as
maximum memory size.

In a safety- or mission-critical system, developers should use operational
monitors or run-time monitors to periodically check the conformance of the
adaptive system to the requirements. If an operational monitor is used, then
high-level descriptions of operational monitors must be included in the
requirements specifications. Different types of operational monitoring
approaches are discussed in Chapter 10.

Input and output requirements for neural networks are crucial since input
data has the greatest influence on adaptation. Requirements that describe
input scaling, gains, and limits are common for neural networks. The V&V
practitioner should also verify the input and output data and the amount of
acceptable error.

The learning algorithm used within the neural network should also be
defined with the requirements. A learning algorithm is used to adapt the
neural network based on an update law. The V&V practitioner should verify
the description of the learning algorithm. Examples of learning algorithms
include calculating the mean squared error between the desired output and
the actual outputs, Newton methods, and Levenberg-Marquardt [Bishop
1996].

2.3.2 Neural Network Knowledge Requirements

With an adaptive neural network system the states of neural network are
unknown prior to operation. One of the motivations for employing an
adaptive control system is the versatility to react to unknown operating
conditions. Requirements related to what the neural network must and must
not know are important in determining valid operation of the system.
However, specifics of neural network knowledge are difficult to establish
before the input domain is clearly understood and a preliminary neural
network is constructed. As a result, software requirements should depict
general knowledge of an adaptive neural network.

Augmentation of Current Verification and Validation Practices 21

A neural network is initialized before it begins to learn upon input data.
This method should be captured in the software requirements. Neural
networks may be initialized from a data file, software module, or another
software system. Purely adaptive online neural networks are initialized by
randomizing the weights, or by setting the weight values to some constant.

For fixed neural networks or neural networks with knowledge prior to
deployment, the requirements should specify the type of training data used.
The requirements should depict the source of the training data, data ranges
and attributes, and metrics of expected performance of the neural network
upon the training data.

Software requirements specifications should impose limitations on neural
network knowledge. These requirements should set specific knowledge
limits or describe undesirable behavior. Software requirements may describe
what the adaptive system shall not do as well as what the adaptive system
must do.

A method to developing requirements depicting neural network
knowledge is to describe the knowledge in the form of rules. Initially,
domain experts can compose symbolic knowledge from the target problem
domain. Neural network developers may then transform this knowledge into
rules that is used in rule extraction and rule insertion techniques. Information
attained from these processes can provide a sufficient level of detail for
neural network knowledge requirements. A more detailed explanation of rule
extraction is provided in Chapter 8.

2.4 Neural Network Design Vi&V

After the neural network is designed to some desirable state, the V&V
practitioner must evaluate the design based on the criteria of correctness,
consistency, completeness, accuracy, readability, and testability. Although
these criteria may seem identical to traditional software design evaluation
outlined by IEEE 1012-1998, the methods for evaluating a neural network
system vary greatly from the methods used for traditional software.
Consequently, a new task needs to be considered to describe methods to
V&V the neural network design.

In evaluating the neural network design, the V&V practitioner must focus
on areas such as neural network structure, neural network performance
criteria, training and testing data, training processes, and operational
monitors. Each of these areas should be described in sufficient detail in
design documentation. Because of the extra significance given to the neural
network design, it is recommended that the project team develop a special
appendix to the software design document for the neural network. Another
option is the creation of a stand-alone neural network design document.

22 Chapter 2

Many people of varied backgrounds participate in a project, so the
documented design should contain enough information to convey the
purpose, rationale, mathematics, and development of the neural network that
anyone not familiar with neural networks in general would be able to
understand it. Essential information would include a summary of all terms
used for the specific neural network, as well as visualization techniques to
aid understand such as diagrams or flowcharts.

Many of the ideas discussed in this section should appear in the
documentation. There should be sections describing the functions that
comprise the neural network, how the neural network is to learn and grow,
and specific design details for input pre-processing, output post-processing.

Based upon the system design, there may be other considerations for
inclusion into the design. Some systems may require that the neural network
perform data recording for later analysis. Others might make use of multiple
neural networks in a form of N-version programming for neural networks.
All of these specifics should be present in the documentation.

Neural networks have several design elements that must be evaluated for
correctness. These include the neural network structure that is composed of
the specific neural network architecture and the internal neural network
parameters. Design documentation should include a clear description of the
neural network nodes, the connection matrix between the nodes, weights,
activation functions, growth functions, learning functions, hidden layers,
inputs, and outputs.

While some of these elements can number into the hundreds and
thousands, each individual element need not be documented. Instead, the
focus should be on descriptive qualities like the number of nodes, the
number of connections per node, what mathematical functions occur for
each node, etc.

Neural network architectures such as multilayer perceptron, self-
organizing map, radial basis function, recurrent, and Hopfield are used in
very different problem domains. V&V must validate that the selection
processes for the neural network architecture is based upon solid theoretical
or empirical evidence. The selection process may also be based upon
comparison studies, recommendation from experts in the field, or past
experiences within a similar problem domain. V&V should ensure that the
reasons are clearly expressed within concept documentation.

Neural network designs must have sufficient acceptance and rejection
criteria well documented. System testers need to have metrics to determine
the acceptability of the system. These criteria should describe specific
knowledge, stability, and performance constraints. Other possible
performance criteria may include necessary operating frequencies (i.e., the

Augmentation of Current Verification and Validation Practices 23

neural network must produce an output at a rate of 40Hz), and acceptable
variance qualities of the output signal.

V&V must evaluate the accuracy of the neural network design by
ensuring that the training set conforms to system accuracy requirements and
physical laws and that the knowledge acquisition has adequate precision for
system requirements. Training and testing data need to be considered as
design elements. Analysis on this data should address if this data is
appropriate for the intended usage of the system and if it is precise enough
for expected results. The origins of the training and testing data should be
evaluated to remove any possible problems from corrupt data collection,
inappropriate sources of data collection, and problems associated with
combining previous separate data sets into a single larger set.

The training process itself must undergo evaluation for correctness. The
training process should be clearly documented and describe why it is
appropriate for meeting the project needs. This includes identification of
relevant training data sets, justification for the choice of the data sets, and
consideration of the correct data formats for the training data. If multiple
data sets are used, and certain data sets are emphasized during training more
than others, this should also show up in the documentation with justification.
A description of configuration management as used on the training process
should also be present. Information here can include the training data
configuration items that were use, the procedures employed for applying the
training data configuration items, and identification and tracking of
evaluation metrics used throughout the process.

If the system makes use of operational monitors (see Chapter 10), their
design needs to be a part of the documentation. The project can decide to
include these within the neural network documents, to make the operational
monitor design a separate document, or to include it within the overall
software design document. Operational monitor design can influence the
neural network design and vice versa, the neural network design can
influence the operational monitor design. Because of this, the design
documentation needs to contain detailed information on the performance and
interface of any operational monitors in order to minimize problems during
integration with the neural network.

2.5 Modified Lifecycle for Developing Neural Networks

The neural network development lifecycle is different from traditional
lifecycle models. It does not follow the basic waterfall methodology nor
does it follow a pure spiral lifecycle model. Instead neural network
development utilizes parts of both methodologies. The V&V practitioner
should understand the details of the neural network lifecycle model used and

24 Chapter 2

ensure conformance of development activities to the model. The following
sections discuss three distinct models for neural network development.

2.5.1 Common Neural Network Development Model

A common method for development of a neural network is an iterative
cycle that is performed until the neural network has been proven adequate by
some quantifiable measure. The stages in this process are the design,
training, and testing of the neural network.

During the design stage, the neural network developer chooses the
architecture, and the initial number of neurons and layers. The developer
then establishes a connection matrix between all neurons, selects the
learning algorithm and possible growing algorithms, and determines the
initial values for internal parameters including weights and constants
controlling the algorithms. Subsequent passes through the design stage may
involve major overhauls of the design or may simply fine-tune neural
network parameters.

During the training stage, training data is used by the neural network to
learn. Depending on the nature of the problem, the neural network may be
designed to approximate a function describing the training data, or may learn
relationships between input and output data within the training set for
classification. Training sets can be significant in size with several thousand
training examples. After each example, the learning algorithm continues to
adjust the network structure. The goal of the training stage is that after
training the neural network to some state, the internal neural network
parameters are developed enough to satisfy designated requirements and
objectives

After completing a pass through the training data, a separate set of data
called the testing data is used. This set of data has similar properties to the
training data, but with examples the neural network has never seen. By using
new data, the performance of the network can be measured without influence
of examples that were used for training. Results from testing may indicate
that another pass through the design-train-test cycle is necessary. Usually,
the neural network developers have some target metric value they wish to
achieve such as a 95% classification accuracy rate on new data. Until the
metric values are met, the design-train-test cycle is iterated.

2.5.2 Rodvold's Neural Network Development Model

Rodvold [1999] identified that many current neural network development
processes tend to be developed through empirical processes rather than
through precise construction and training methods. To rectify this problem.

Augmentation of Current Verification and Validation Practices 25

Rodvold constructed the nested loop model for neural network development.
The model was constructed from common neural network development
processes, and contains elements from both the waterfall lifecycle
development model and the spiral lifecycle development model. Rodvold's
model, shown in Fig. 2-2, is composed of five steps.

Step 1: Develop a set of neural network requirements, goals, and
constraints into a document labeled Network Performance Specification.

Step 2: Assemble the data that will be used for training the neural
network including data sources, original format of data, and
modifications performed on the data. This step results in the Data
Analysis Document.

Step 3: Training and testing loops are an iterative process in which the
neural network architecture is developed and trained. The first loop.
Variations of Artificial Neural Network (ANN) Topologies, involves
changing the neural network architectural parameters. The middle loop.
Variations of ANN Paradigms, involves modifications to the type of
neural network used. The outer loop. Selection and Combination of ANN
Input Neurons, concerns altering neural network inputs. All design and
training from this step is documented in the Network Training Summary.

Step 4: Network deployment is completed through commercial tools,
automatic code generation provided by commercial tools, or by saving
raw neural network data to file with code to load and execute the neural
network. The deployment of the neural network is documented in the
Network Integration Document.

Step 5: Independent testing and verification produces the Network Test
Plan and the Data Analysis Document. This step also involves creating
the Network Test Report, which summarizes of all tests performed.

26 Chapter 2

Network
Requirements,

Goals, and
Constraints

Network
Performance
Specification

Selection and Combination of
ANN input Neurons

Data Gathering
and

Preprocessing

Data
Analysis
Document

Network
Test
Plan

Training and
Testing Loops

rJ=

Network
Training
Summary

Networl<
Deployment

Network
integration
Document

Independent
Testing and
Verification

Network
Test

Report

Figure 2-2. Critical Neural Network Development Process Model [Rodvold 2001

2.5.3 Kurd's Neural Network Development Model

A major problem for the V&V practitioner, when faced with a safety-
critical neural network, is the inability to effectively perform white-box
analysis. The Safety Lifecycle [Kurd 2003] is a process for developing
neural networks considering the safety criteria that must be enforced to
justify safety operation of a neural network. This model ties hazard analysis
into the development of the neural network's knowledge and specifically
addresses neural networks developed for safety-critical applications. Fig. 2-3
illustrates the development and safety lifecycles. There are three levels in the
diagram:

Augmentation of Current Verification and Validation Practices 27

Requirements
Initial Hazard List

Sub-initial Symbolic
Information

\

^ Initial Symbolic
^ Information

Delivered Platfomi
Safe Plaform
Safety Case

Dynamic Learning

FHA

Learnirig Level
I

Static Learning
(within constraints)

J

Figure 2-3. Safety Lifecycle for Hybrid Neural Networks [Kurd 2003]

The Symbolic Level is associated with the symbolic knowledge
representations. The Translation Level is where the symbolic knowledge is
modified into knowledge that is represented through rules for rule extraction
and insertion. The Neural Learning Level trains the neural network through
empirical data formulated from knowledge from the translation level.

Brief descriptions of the stages in the development model which traverse
the above levels are as follows:

• Determine neural network requirements and goals,
• Collect symbolic sub-initial knowledge from domain experts,
• Compose initial knowledge for the neural network from sub-initial

knowledge,
• Train the neural network on empirical data produced from the initial

knowledge,
• Extract knowledge from neural network and refine this knowledge, and
• Train the neural network with a new refined knowledge set.

2.6 Neural Network Testing

Testing of an online learning neural network is difficult. Formal method
testing techniques such as model checking and theorem proving are not
practical given the characteristics of many neural networks. Theorem
proving is too difficult in complex problem domains. For online adaptive
neural networks, model checking would be inadequate since the neural
network is non-deterministic at run-time. Instead the system tester is left to

28 Chapter 2

augmenting normal testing practices as well as incorporating some new
ones.

Like traditional software testing, the component or unit-level testing of a
neural network system will focus upon determining the correct
implementation of the system, but from a ftinction or module perspective.
This is true regardless of the neural network being adaptive or fixed.

Since a neural network is a statistical tool, the functions will be of a
mathematical nature. Testing will need to ensure that these fiinctions return
values for all possible inputs and that the values returned are consistent with
their mathematical nature. A project may make use of approximations or
table lookups to implement these functions. Testing should concentrate on
how accurate these functions are and how errors in the implementation can
ripple through other software modules and the possible system level effects
from this.

Interface testing, another aspect to testing that exists for non-adaptive
software, can require more concern for adaptive software. Neural networks
are very capable of performing an approximation to a solution given
partially noisy and partially imprecise data. When analyzing the inputs and
outputs, practitioners should inspect the pre- and post-processing of the
inputs looking for poor performance or improper implementations. An
example is a smoothing function that isn't smoothing the data as it was
intended. Data interpolation algorithms may also contribute to generating
poor data that is masked by the neural network. The system testers may
know that the neural network is performing with a very minor error, but if an
error in the pre-processing is corrected, the system performance could
improve.

The robustness of the neural network may work as a disadvantage to the
system tester. If allowed to adapt during system usage, neural networks can
overcome incorrectly provided inputs. This can happen if one person or
team develops a module that produces input for the neural network and
another person or team develops the neural network module. If the data is
switched between the module and the neural network, and the neural
network adapts, it can compensate for this deficiency, possibly with only a
minor error that the team regards as negligible.

Two new aspects of testing that are normally not considered are the
neural network knowledge and structure. Structure testing determines
whether the design is the most optimal at learning what is intended,
compared to other designs. Knowledge testing would investigate what the
neural network has already learned and how well it has learned it.

Typically, when the neural network undergoes design-train-test
development, the network is tested after it passes through an iteration of
training. There is typically a performance metric, usually an error function.

Augmentation of Current Verification and Validation Practices 29

associated with how well the neural network handles the data found in the
test set. Over time, this error metric should decrease towards zero
representing the neural network has learned the exact function it is to
perform.

System testers may want to make sure these iterative testing stages are
tracked and the error values recorded. By looking at these error values over
time, it can provide evidence that the neural network design is improving
and is better than any of the previous other states the design was in. The
tester may not actually be responsible for conducting this kind of test, they
just make sure the results are collected and analyzed.

Since structure testing is testing if the current design is better than
previous designs, the results do not need to prove that the current design is
the best possible design achievable. It only needs to prove that the design is
better than it was previously. While it would be very useful to know that the
current design is the absolute best, trying to show this through testing would
be impractical.

Knowledge testing is perhaps the hardest area for neural network analysis
because it involves evaluating whether the neural network is learning what
the designers want it to learn. This goes beyond the use of a performance
metric like the error function mentioned before. An error metric only tests
for one particular input set; it does not reflect how the neural network would
perform for a larger set of inputs.

Testing knowledge may require the use of rule extraction techniques to
translate the network knowledge into a set of symbolic rules. The rules
present a more tangible representation; they can be individually tested, used
within existing testing tools, and can facilitate other analysis methods.
Further discussion of this approach can be found in Chapter 8.

Another method for testing knowledge, though limited and often times
impractical, is to use a brute force approach that tests the neural network for
a very large set of possible inputs. By looking at the performance over a
greater range, some sense of how the neural network will perform for an
input domain can be gathered. This kind of testing may also fall into
reliability assessment or sensitivity analysis where minute differences within
the input domain are studied to determine if the neural network could behave
erroneously. The tester may need to rely upon test data generation
techniques to assist with this kind of evaluation. Consult Chapter 9 for
further details.

30 Chapter 2

3. SUMMARY

This chapter has revealed several gaps in current V&V practices for
adaptive systems, and has shown augmentations to traditional V&V
processes to satisfy these gaps. Through the mapping of software V&V
standards, process guidance, previous research, and IPCS documentation, a
guidance document was formulated to augment current V&V practices to
accommodate the characteristics of neural networks or adaptive systems.
The guidance document [ISR 2005] embodies a comprehensive
methodology for the V&V of neural networks and gives the V&V
practitioner direction on how to augment established V&V processes to
address neural networks or adaptive components within a system.

REFERENCES

Bishop, C. M. 1996. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, England.

Casdorph, Van; Brian Taylor; et al. 2000. Software Verification and Validation Plan for the
Airborne Research Test System II, Intelligent Flight Control Program. Institute for
Scientific Research, Inc. IFC-SVVP-FOOl-UNCLASS-120100, Dec. 1.

IEEE Std 1012-1998. 1998. IEEE Standard for Software Verification and Validation. New
York, NY.

IEEE/EI A 12207.2-1997. 1998. IEEE/EI A Guide, Industry Implementation of International
Standard ISO/IEC 12207:1995, (ISO/IEC 12207) Standard for Information Technology -
Software Lifecycle Processes - Implementation Considerations. New York, NY.

Institute for Scientific Research, Inc. (ISR). 2001. DCS Design Report for the Intelligent
Flight Control Program. IFC-DCSR-D003-UNCLASS-010401.

Institute for Scientific Research, Inc. (ISR). 2003. Software Verification and Validation Plan
for the Airborne Research Test System II of the Intelligent Flight Control Program. IFC-
SVVP-F002-UNCLASS-050903.

Institute for Scientific Research, Inc. (ISR). 2005. Guidance for the Independent Verification
and Validation of Neural Networks. IVVNN-GUIDANCE-DOOl-UNCLASS-072505.

Kurd, Zeshan, and Tim Kelley. 2003. Safety Lifecycle for Developing Safety Critical
Artificial Neural Networks. In Proceedings of 22nd International Conference on
Computer Safety, Reliability, and Security (SAFECOMP'03) 23-26 September 2003.

Mackall, Dale; Stacy Nelson; and Johann Schumman. 2002. Verification and Validation of
Neural Networks for Aerospace Systems. NASA Dryden Flight Research Center and
NASA Ames Research Center. June 12.

Mackall, Dale; Brian Taylor; et al. 2003. Verification and Validation of Adaptive Neural
Networks for Aerospace Systems, Version 1.2 (Draft without Appendices). NASA Dryden
Flight Research Center and NASA Ames Research Center. March 31.

PuUum, Laura L. 2003. Draft Guidance for the Independent Verification and Validation of
Neural Networks. Institute for Scientific Research, Inc. IVVNN-GUIDE-DOOl-
UNCLASS-101603. October.

Augmentation of Current Verification and Validation Practices 31

Rodvold, D.M. 1999. A Software Development Process Model for Artificial Neural Networks
in Critical Applications. In Proceedings of the 1999 International Conference on Neural
Networks (IJCNN'99). Washington D.C.

Rodvold, DM. 2001. Validation and Regulation of Medical Neural Networks. Molecular
Urology 5(4): 141-145.

Chapter 3

RISK AND HAZARD ANALYSIS FOR NEURAL
NETWORK SYSTEMS

Laura Pullum, Brian J. Taylor
Institute for Scientific Research, Inc.

\. INTRODUCTION

The IEEE Standard for Software Verification and Validation [IEEE
1998] includes activities for risk and hazard analyses. The standard is
intended to be general in nature and apply to all types of software. However,
specific guidance for risk and hazard analysis related to the special
characteristics of neural network software is required, and is not presently
available. Smidts [2001], Chillarege [1992], and others provide general
frameworks and taxonomies for software probabilistic risk assessment.
These, too, apply in general to software, but are not specific, nor applicable
in some instances, to neural networks. The goal of the research described in
this chapter is to provide a suggested research path for risk assessment for
neural network systems and an example failure modes and effects analysis
(FMEA) for practitioner use. In the following sections, we present the
results for the risk assessment of neural network systems (Section 2.0) and
neural network FMEA research (Section 3.0).

2. NEURAL NETWORK RISK ASSESSMENT

The processes, activities, and tasks in the IEEE verification and
validation (V&V) standard that are related to risk and hazard analyses are
listed in Fig. 3-1 and Fig. 3-2. We note the required activities, and what is
recommended by our research and by the Ames/Dryden V&V guidance
documents [Mackall 2002, 2003] in the paragraphs below.

34 Chapter 3

Process: Development |
Acdvify: ConctptV&V \

Hazard
Analysis
Tasks

Risk
Analysis
Tasks

Analyze potential hazards to and from the conceptual system. The analysis 1
shall 1) identify potential system hazards, 2) assess severity of each hazard,
3) assess probability of each hazard; and 4) identify mitigation strategies for
each hazard.
Identify the technical and management risks. Provide recommendations to
eliminate, reduce, or mitigate the risks.

AcdvUy: Requirements V&V |

Hazard
Analysis
Tasks

Risk
Analysis
Tasks

Determine software contributions to system hazards. The hazard analysis 1
shall a) identify the sofhvare requirements that contribute to each system
hazard; and b) validate that the software addresses, controls, or mitigates each
hazard.
Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the risks.

Acdvitp: Design V&V |
Hazard
Analysis
Tasks
Risk
Analysis
[Tasks

Verify that logic design and associated data elements correctly implement the 1
critical requirements and introduce no new hazards. Update the hazard
analysis.
Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the risks.

1 Activity: Implementation V&V |
Hazard
Analysis
Tasks
Risk
Analysis
1 Tasks

Verify that the implementation and associated data elements correctly 1
implement the critical requirements and introduce no new hazards. Update
hazard analysis.
Review and update risk analysis using prior task reports. Provide 1
recommendations to eliminate, reduce or mitigate the risks.

Activify: Test V&y \
Hazard
Analysis
Tasks
Risk
Analysis
[Tasks

Verify that test instrumentation does not introduce new hazards. Update the 1
hazard analysis.

Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the risks.

1 Activity: Installation and Checkout V&V
Hazard
Analysis
Tasks
Risk
Analysis
[Tasks

Verify that the installation procedures and installation environment does not
introduce new hazards. Update the hazard analysis.

Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the risks.

Figure 3-1. IEEE Std. 1012 Hazard and Risk Analyses Tasks (Part 1)

Risk and Hazard Analysis for Neural Network Systems 35

Hazard
Analysis
Tasks
Risk
Analysis
Tasks

Hazard
Analysis
Tasks
Risk
Analysis
[Tasks

Process: Operation
Activity: Operation V&V

Verify that the operating procedures and operational environment does not
introduce new hazards. Update the hazard analysis.

Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the nsks.

Process: Maintenance
Acdvlty: Maintenance V&V

Verify that software modifications correctly implement the critical
requirements and introduce no new hazards. Update the hazard analysis.

Review and update risk analysis using prior task reports. Provide
recommendations to eliminate, reduce, or mitigate the nsks.

Figure 3-2. IEEE Std. 1012 Hazard and Risk Analyses Tasks (Part 2)

2.1 Concept V&V Hazard and Risk Analysis Tasks

During the Concept V&V activity, the scope of hazard and risk analysis
tasks is typically at the conceptual system level.

A preliminary hazard analysis can be conducted by use of hazards and
operability studies (HAZOPS). Given a neural network system that adapts
during operation, then the following potential hazards should be considered
for the HAZOPS:

1. The neural network does not adapt.
2. The neural network adapts, but is unable to reach convergence.
3. The neural network adapts and converges, but converges to an incorrect

output.
4. The neural network converges to a correct state, but cannot do so in the

required time.
5. The neural network grows beyond available system resources during

adaptation.

Identification of technical and management risks at the conceptual
system level is a task that is essentially unaltered by whether or not neural
networks are used. In addition, recommendations for risk elimination,
reduction and mitigation are on the system level and black box "non-view"
into the neural network operations and risks would produce similar strategies
for a system with or without neural networks.

In terms of assessing management risk, the practitioner should look at
project team member expertise with neural network development. Teams

36 Chapter 3

who have never developed neural networks will face schedule and budget
risks. They may not have enough experience to know how to efficiently
design the neural network and may spend extra resources developing the
network and identifying effective ways of testing and validating the neural
network system.

From the technical risk standpoint, the analysis needs to concentrate on
the justification for the use of a neural network solution. Questions that
investigate technical risk may ask if a neural network system is an
appropriate solution given the problem being solved, if the neural networks
should be online adaptive or not, and what types of built in safety the system
will need.

2,2 Requirements V&V Hazard and Risk Analysis Tasks

At the requirements stage, hazard and risk analyses for systems
employing neural networks start to differ from that for systems employing
more conventional software. There will be requirements specifically
addressing the neural network component(s) and these requirements can be
used, as with non-neural network software requirements, to support the
hazard and risk analysis tasks during this stage. Better means of specifying
neural network requirements will aid in determining their contribution to
system hazards and in validating the control or mitigation of each hazard. At
this stage, a top-level fault model of the neural network can be initiated. The
fault model is used to provide a foundation for risk assessment methods such
as HAZOPS, FMEA, and fault tree analysis (FTA). Refer to Section 3.0 for
additional information.

Risk identification for neural network systems during the requirements
stage can be more difficult than the same identification conducted for
traditional software systems. Examples of areas of risk that can be
considered during this stage include:

1. Risks introduced by the specification and collection of training and
testing data

Risks from the specification of training and testing data for neural
network development can fall into either technical or management risks. For
management risks, there may be concerns associated with the time it will
take to collect these data sets and the ability of the project to track and
identify the data sets once collected.

A technical risk associated with the training data is the lack of a
sufficiently large and rich enough set of data to allow for proper knowledge
acquisition. In other words, the neural network will not be able to

Risk and Hazard Analysis for Neural Network Systems 37

approximate the desired function well. The project team may need to
consider means of increasing the size of the dataset such as test data
generation.

The normal training-testing approach to neural network systems may
leave an inadequate size of testing data, especially in the case of safety- and
mission-critical systems. Typically, the entire available data set is split into
75% training and 25% testing data. That limit on the testing set may not
allow proper system evaluation. Activities like reliability assessment and
robustness analysis may require on the order of tens of thousands of test
cases. If the project does not prepare for some of these concerns in their
specifications of testing data, associated risks need to be documented.

2. Risks introduced by specification of neural network performance

If neural network performance requirements are incorrectly stated or are
too difficult to obtain, a project may spend a longer time developing the
neural network to meet the performance criteria. A result is that schedules
slip and budgets overrun. Possible ways to mitigate this risk are the use of
reliable neural network training tools, inclusion of knowledgeable neural
network developers on the team, and the establishment of well-defined
performance criteria.

2.3 Design V&V Hazard and Risk Analysis Tasks

At the design stage, hazard analysis tasks include verifying that logic
design and associated data elements correctly implement the critical
requirements and introduce no new hazards. Risk analysis tasks at this stage
include providing recommendations to eliminate, reduce, or mitigate the
risks. Details can now be added to the neural network fault model and
subsequently more detailed FMEA and FTA can be performed. Additional
research and example analyses of FMEA and FTA for neural networks are
required. This chapter provides an example FMEA for the Intelligent Flight
Control System (IFCS) next generation (GEN2). Refer to Section 3.0 for
additional information. Lyapunov stability analysis can be used to prove
convergence (see Chapter 5) and safety monitors can be used to reduce or
mitigate risks related to the use of neural networks in real-time safety critical
systems. Both Ames/Dryden guidance documents [Mackall 2002, 2003]
provide recommendations for the design V&V stage, although no specific
recommendations are made for hazard or risk analysis.

Neural networks undergo a design-train-test development that may be
iterated any number of times. For the Design V&V stage, hazard analysis
should only be concerned with the design aspect of the development. This

38 Chapters

includes the design of the neural network architecture, size, intended use,
collection of training-testing data, etc. The train-test aspects are better
considered under Implementation V&V Hazard and Risk Analysis Tasks in
Section 2.4.

Hazards introduced due to the design of the neural network include:

• Training data set does not model intended goals.
• The collection of training and test data sets is not tracked under

configuration management and is not described in design documentation.
• Lack of adequate testing data to achieve component-level project-

specific certification standards.
• Neural network architecture is not completely specified.
• The implementation of the network prior to training is incorrect (initial

number of neurons, connection matrices, growing/learning functions, or
activation functions contain errors).

• Inappropriate growing/learning algorithm is selected, causing sub-
optimal knowledge acquisition.

Some of the management risks that could be encountered during the
design phase include cost impact associated with the need to purchase neural
network development environments or specialized testing tools and suites.
There could also be schedule risks due to the project teams lack of
experience with developing neural network solutions.

Technical risks include insufficient training and testing data. With
insufficient training data, the project may not be able to generalize or
specialize the neural network learning. With insufficient testing data, the
project may lack the ability to prove correctness, safety and reliability of the
neural network. Both training and testing data must represent the entire data
domain, rather than just a few constrained examples. Especially in the case
of safety- and mission-critical applications, the ability to demonstrate the
performance of the neural network algorithm throughout the application
domain is necessary for system acceptance.

Another technical risk arises due to the proper selection of the neural
network base architecture, given the problem being solved. Selecting an
appropriate neural network algorithm impacts the feasibility of system
design and implementation. The process of selection is not well documented
in the literature.

Projects may be tempted to ignore software engineering best practices
because they don't easily apply to the neural network. It has often been said
of neural network development that design is more of an art than a science.
If the development team does not take all the necessary precautions such as
controlling the training data, recording design and training procedures, then

Risk and Hazard Analysis for Neural Network Systems 39

it is possible that the end result, no matter how appropriate a solution, will be
an unexplainable and unlikely to be repeated should it become necessary.

2.4 Implementation V&V Hazard and Risk Analysis
Tasks

At the implementation stage, hazard analysis tasks include verifying that
the implementation and associated data elements correctly implement the
critical requirements and introduce no new hazards. Risk analysis tasks at
this stage include providing recommendations to eliminate, reduce or
mitigate the risks. Risk assessment models, such as the fault model, FMEA,
hazard analysis, and FTA, can be updated per implementation details.
Sensitivity analysis and fault injection may be useful tools to examine the
performance of risk mitigation techniques. Both Ames/Dryden guidance
documents [Mackall 2002, 2003] provide recommendations for the
implementation V&V stage, although no specific recommendations are
made for hazard or risk analysis.

During the implementation phase, hazard analysis should focus on those
hazards affected or introduced through the learning of the training data by
the neural network. The actual design of the neural network was dealt with
in the design stage. Here, the focus needs to be on the knowledge and how
well the knowledge was acquired. Some examples of hazards include:

• Through learning and/or growing, the neural network structure exceeds
the computational limitations of the system.

• Neural network takes too long to adapt to new stimuli.
• The neural network never reaches a point of stability. The neural

network performance oscillates around the designated success criteria
metric but never achieves the intended metric.

• Neural network is over-generalized and cannot provide a suitable
solution to the specific problem.

• Neural network is too specialized and cannot provide a general solution
for the problem domain.

• Observable behavior of the neural network is not predictable or
repeatable.

A management risk associated with the implementation stage is the
potential loss of time due to a poor understanding of effective training
strategies. If the neural network learning never converges, the project team
may spend too much time trying to achieve a desired performance measure
and never come close. Another management risk is the loss of version

40 Chapter 3

control of the neural network training process, leaving the project unable to
repeat a training process or later inspect it when looking for problems.

Technical risks include a lack of sufficient training or testing data,
especially to meet the needs of rigorous testing and reliability assessment.
Another possible technical risk occurs when the neural network designers
have trained a neural network to meet performance criteria, but they fail to
adequately test the neural network across the entire operational profile. In
this case, the network may seem to be performing correctly, but in certain
situations that are not considered, the network actually performs quite
poorly.

2.5 Test Vi&V Hazard and Risk Analysis Tasks

At the test stage, hazard analysis tasks include verifying that test
instrumentation does not introduce new hazards. Risk analysis tasks at this
stage include providing recommendations to eliminate, reduce, or mitigate
the risks. Fault injection testing may be used to examine the performance of
risk mitigation techniques. Faults to inject may be found in the fault model
details. This may also be called FMEA testing and is suggested in the
Ames/Dryden guidance documents [Mackall 2002, 2003].

During the testing stage, the risks and hazards usually relate to accepting
a neural network system inappropriately. This could occur through the use
of testing techniques or simulations that fail to adequately exercise the
neural network. Other examples include:

• Failure to examine the training data for completeness and correctness.
• Failure to review input selection (ensuring the input choices are correct,

based upon an acceptable technique like principal component analysis,
etc.).

• Failure to review input preprocessing and output post-processing for
correctness.

• The test procedures described in the test plans do not properly assess
neural network performance criteria such as stability and convergence.

• For software-in-the-loop simulations (SILS), the test cases do not
accurately reflect how the adaptive component performs within the entire
system.

• For hardware-in-the-loop simulations (HILS), near-identical versions of
the hardware do not accurately reflect performance of the true hardware.

The most significant technical risk during testing, especially for that of
an adaptive neural network system with high integrity levels, is a
catastrophic failure of an accepted system. Management risks can be

Risk and Hazard Analysis for Neural Network Systems 41

associated with the loss of effectiveness due to the unavailability of proper
testing tools and simulations and the time it takes to utilize the testing tools
and simulations that are available.

2.6 Installation and Checkout V&V Hazard and Risk
Analysis Tasks

At the installation and checkout stage, hazard analysis must consider the
contributions to system hazards introduced from incompleteness and
incompatibility.

If the neural network system requires some environment in which to
operate, a potential hazard is the lack of delivery of this environment with
the installation package. Another possible area of omission is the failure to
deliver checkcases that will exercise the system after installation to make
sure that the installation did not introduce any kind of error. If the system
makes use of real-time operational monitors, the monitors need to be a part
of the complete package as well.

Incompatibility can be introduced when the target environment is not
similar to the development environment. The interface between modules
providing input or accepting output from the neural network may be
different. Computer hardware attributes like processor size and speed may
be different, introducing performance issues. There may be multiple threads
running on the same board as the neural network software, competing for
resources and impeding the network's operation.

In general, the risks encountered during the installation and checkout
phase are based on whether or not the system operates properly. Other risks
must be of concern in this phase especially when the neural network is part
of a safety-critical system with the potential to terminate the mission or harm
humans. In such a system, a minor incident can put humans at risk and
escalate into budget cuts, schedule extensions, program delays and even the
cancellation of a program.

2.7 Operation Vi&V Hazard and Risk Analysis Tasks

At the operation stage, hazard analysis tasks include verifying that the
operating procedures and operational environment does not introduce new
hazards. Risk analysis tasks during this stage include providing
recommendations to eliminate, reduce, or mitigate the risks. It is highly
recommended that V&V evaluate the use of operational monitors (see
Chapter 10), stability and convergence analysis (see Chapter 5), and risk

42 Chapter 3

assessment techniques (used throughout the Hfecycle) (see Section 3.0) prior
to the system under development reaching the Operation V&V phase.

With a neural network system that continues to learn and adapt during
system operation, hazard analysis is more significant than that of traditional
software. The reason is that it is often assumed with traditional software,
any hazards that might be identified already exist prior to the system being
deployed. However, with an adaptive system, new hazards can be
introduced based upon what data comes into the system and thus how the
system learns. Example of hazards include:

• Operating procedures are inconsistent with the user documentation or
with system requirements.

• Operating conditions differ from those intended by system developers.
• Input data is received from a source that was not originally intended.
• Computational resource limits are approached or exceeded (as may

happen with growing neural networks that add more neurons and
connections over time).

• Operational monitors function inappropriately as either too restrictive or
not restrictive enough.

The technical risks encountered during the Operation phase are similar to
those in the Installation and Checkout phase. The system either does not
operate or operates improperly which is directly related to risks of adverse
impacts on schedule and budget.

The use of operational monitors may be a part of a wider risk mitigation
strategy. If so, the specifics of their usage within mitigation should be well
defined. This may include contingency planning when operational monitors
indicate system performance problems.

2.8 Maintenance V&V Hazard and Risk Analysis Tasks

At the Maintenance stage, hazard analysis tasks include verifying that
software modifications correctly implement the critical requirements and
introduce no new hazards. Based upon what is carried out during
maintenance, updating the hazard analysis is recommended. For example, if
the design is unaltered but the neural network knowledge is changed through
re-training, the hazard analysis should consider the suggestions found within
the Implementation V&V Hazard Analysis section, but it need not
reconsider the Design V&V suggestions. Likewise, risk analysis tasks at
this stage include providing recommendations to eliminate, reduce, or
mitigate risks based upon what was modified.

Risk and Hazard Analysis for Neural Network Systems 43

3. FAILURE MODES AND EFFECTS ANALYSIS
FOR NEURAL NETWORKS

To study risk assessment for neural networks, we must resolve the issue
of how a neural network becomes defective and the nature of the defects.
This is included in a fault model. The next issue is applying the fault model
to the various tools used in risk assessment - namely FMEA, FTA, and
HAZOPs. The research reported in this section developed a fault model for
the multi-layer perceptron (MLP) neural network and examined the use of
that fault model to enable FMEA.

3.1 Fault Model

A fault model describes the types of faults a system can develop,
including where and how those faults occur in the system. The MLP neural
network architecture is considered for examination because of its use in the
IFCS [Rumelhart 1986]. An abstract model for the MLP neural network is
illustrated in Fig. 3-3. It provides a graphical representation of, as well as
the operation and training equations governing, the system.

From this abstract definition of the neural network, we examine the
entities in the model for possible fault locations. Both training and operation
phases are considered in the discussion below of the entities and potential
fault locations. The following information is derived from Bolt's work on
neural network fault tolerance [Bolt 1992].

Outputs

Inputs

Operation:

Output Oi = f\Y.^ijOj
\ j J

such that feeding unitsy already evaluated and
where/; is a differentiable monotonic function.

Training:

Weight change is A ^.j = TJ^.QJ

where for output units Si = iti ~ ouf \ ILwik Ok

and for hidden units St- f \1L Wik Ok JZ 5i Wn

Figure 3-3. Multi-Layer Perceptron Abstract Model [Bolt 1992]

44 Chapter 3

• Weights Wij - for the operational phase (fixed values in the MLP network
once training has finished) and for the training phase. For simplicity,
bias values, Ot, are viewed as weights on connections from a dummy unit
that is permanently active.

• Threshold Functions ft - a fault in a threshold function will alter the
transformation of the activation to an output value in some manner. This
will affect both training and operational phases.

• Derivative of Threshold Functions f[- this fault will affect the system
only during the training phase. It is identified as a separate fault since its
function is generally different to that of ft.

• Constant Values - faults affecting any constant values are fixed by
definition. An example during the training phase is the learning rate, //.

• Target Values tt - these are not included in the constant values above
since it is conceivable that a MLP network may be trained on data that is
modified as time progresses, e.g., [Miikkulainen 1988].

• Topology - the connectivity of the neural network could easily be subject
to faults in various ways, such as the loss of a connection between two
units.

There are some additional entities that must be considered for inclusion
in the fault model because of their functional role in MLP neural network
operation, even though their lifetime is strictly limited. For example, delta
values. Si, have to be kept at each backward pass so that errors can be
evaluated at hidden units. These additional entities are noted below and are
derived from Bolt [1992].

• Activation Values, ai, where ai is defined as

Delta Si - faults in these are only relevant during the training phase.
Weight Change Aw/y - these are the alteration for the stable weight base
value, and as for 5,, faults are only applicable during the training phase.

From the fault model, it can be seen that a large number of possible fault
locations exist for a MLP neural network. However, when the fault
manifestations are defined, we find that many of them can be discarded from
consideradon.

Risk and Hazard Analysis for Neural Network Systems 45

3,2 Fault Manifestations

We have identified the entities that may be possible locations for faults
using the mathematical model of the neural network. The next step is to
describe the nature of the faults the entities might suffer. We use the
technique for defining fault manifestations described by Bolt [1992]. First,
possible faults are defined using the maximization of damage principle. This
tends to lead to the development of extreme fault modes. The second step
using information derived from implementation considerations is then
applied to the fault modes. This has the effect of either restricting a mode's
effect or ruling it out completely. A set of failure modes for the MLP neural
network is defined by applying these concepts to the fault model and
locations described above.

Weights Wij

• Wij = 0 causes loss of any partial information that the weight held
• Wij -^ - Wij weight is multiplied by - 1 ; represents a unit always trying to

misclassify an input

OR a saturation limit can be applied on any faulty weight by restricting
weights to the range [-W, +W]. This suggests the faults:

• negative wy -^ +W
• positive Wij —> -W

Threshold Function
• Stuck-at-minus-one

Stuck-at-plus-one •

Derivative of Threshold Function
• Stuck-at-plus-one
• Stuck-at-zero

Learning Rate
• r| = 0 typical range (0, 1]
• r| == its highest possible value

Target Values
• ti = value opposite to the fault-free value (the targets generally take only

the two values at the extreme ends of the threshold function range)

46 Chapter 3

Topology
• Loss of a connection between 2 units
• Random reconnection of a link to another unit in the network (possibly

due to a short-circuit)

•

Activation Values, a;, and Delta. 6i
Limit to opposite value OR
Constrain 6i and ai to a limited range or randomize them

Weight Change Awj|
• Only needs to be considered if they are stored temporarily, then they

would have similar failure modes as those for activation values and
deltas

3.3 Fault Example

The next step is to use the information on failure modes above and
illustrate its use in performing a failure modes and effects analysis. This
requires a sample system and for these purposes, the IPCS GEN2 MLP
neural network is used (Table 3-1). Note that the purpose of the IPCS neural
network is to reduce system error.

When the neural network interferes with the proportional-integral
derivative (FID) error compensation, the resulting system effect is poorer
flying quality than with dynamic inversion alone. There are various ranges
of flight quality problems based upon the Cooper/Harper handling qualities
scale, e.g., 1-3 is acceptable; 4-6 there is a problem in the system and the
system requires some pilot compensation; and 7-8 the pilot must provide
considerable compensation to the system. If the neural network failure mode
is transient, then the system effect is most likely in the 4-6 range. If the
neural network failure mode is permanent, then the system effect can go to
the 7-8 range. The table above notes the worst case and assumes no
operational monitor or other non-PID combination for fault mitigation.

Risk and Hazard Analysis for Neural Network Systems

Table 3-1. FMEA for IPCS GEN2 Neural Network

47

Neural Network
Entity
Weights

Threshold Function
(sigmoidal)

Derivative of
Threshold Function

Learning Rate

Target Values

Topology

Failure Modes

Wij=0

Wij - > - Wij

Stuck-at-minus-one

Stuck-at-plus-one

Stuck-at-plus-one

Stuck-at-zero

Tj = 0 typical range
(0,1]

r| = its highest
possible value

ti = value opposite to
the fault-free value
(the targets generally
take only the two
values at the extreme
ends of the threshold
function range)
Loss of a connection
between 2 units

Random
reconnection of a
link to another unit
in the network
(possibly due to a
short-circuit)

Local Effect

Incorrect error
reduction

Network instability;
unable to converge

Network instability;
unable to converge
Network instability;
unable to converge
Loss of error fitting
(sigmoid becomes
linear)
No error
compensation
No weight change,
can not
accommodate
system error
Instability, network
unable to achieve
local minima (most
likely)
Network would
move away from
optimum error
reduction, become
more erroneous

Incorrect error
reduction; loss of
internal knowledge
Incorrect error
reduction; loss of
internal knowledge

System Effect

Poor handling
qualities (HQ);
system will
compensate, but take
longer to
compensate than
without error.
System instability;
may lose error
compensation (LEG)
totally. May never
regain good flying
quality.
Poor HQ

Poor HQ

n.a.

Poor HQ

Poor HQ

LEG

LEG

LEG, transient

LEG, transient

48 Chapter 3

Neural Network
Entity

Failure Modes Local Effect System Effect

Activation Values

Delta

Weight Change

Limit to opposite
value

Limit to opposite
value
Limit to opposite
value (Consider only
if they are stored
temporarily)

Weights adjust in
opposite direction
giving double error
Weights change in
the wrong direction
Takes longer to
converge

Poor HQ

Poor HQ, transient

Poor HQ

4. SUMMARY

Guidance on risk assessment specific to the special characteristics of
neural network software is required, and this is not presently available.
General frameworks and taxonomies for software probabilistic risk
assessment have been proposed, but they are not specific, nor applicable in
some instances, to neural networks. This chapter, while limited in its
applicability to every safety- and mission-critical neural network system,
points out several possible risk assessment techniques as well as useful
places to begin considering identification of risks and hazards.

REFERENCES

Bolt, George Ravuama. 1992. Fault Tolerance in Artificial Neural Networks - Are Neural
Networks Inherently Fault Tolerant? D. Phil. Thesis, University of York. Nov.

Chillarege, R.; W. L. Kao; and R. G. Condit. 1992. Orthogonal Defect Classification - A
Concept for In-Process Measurements. IEEE Transactions on Software Engineering SE-
18:943-956.

IEEE Std 1012-1998. 1998. IEEE Standard for Software Verification and Validation. New
York, NY.

Mackall, Dale; Stacy Nelson; and Johann Schumman. 2002. Verification and Validation of
Neural Networks for Aerospace Systems. NASA Dryden Flight Research Center and
NASA Ames Research Center. June 12.

Mackall, Dale; Brian Taylor; et al. 2003. Verification and Validation of Adaptive Neural
Networks for Aerospace Systems, Version 1.2 (Draft without Appendices). NASA Dryden
Flight Research Center and NASA Ames Research Center. March 31.

Miikkulainen, R.; and M. Dyer. 1988. Encoding Input/Output Representations in
Connectionist Cognitive Systems. 1988 Connectionist Models Summer School, Carnegie-
Mellon University. Morgan Kaufmann.

Rumelhart, D.E.; G.E. Hinton; and R.J. Williams. 1986. Learning Internal Representations by
Error Propagation. In Parallel Distributed Processing, eds. Rumelhart, D.E.; and J.L.
McClelland, pp. 318-362. MIT Press.

Risk and Hazard Analysis for Neural Network Systems 49

Smidts, Carol; Bin Li; and Ming Li. 2001 Integrating Software into Probabilistic Risk
Assessment. NASA report.

Chapter 4

VALIDATION OF NEURAL NETWORKS VIA
TAXONOMIC EVALUATION

Brian J. Taylor, James T. Smith
Institute for Scientific Research, Inc.

\. INTRODUCTION

This chapter presents a taxonomic overview of neural network systems
from multiple perspectives, i.e., a taxonomic view of neural network
validation. Major characteristics of application problems and their neural
network solutions are considered. The intent of this material is to aid the
V&V practitioner with validation, the assessment of the appropriateness of a
particular neural network-based solution for the problem being solved.

Validation of a computer system has often been summed up in the
following question:

Has the right system been built?

This chapter considers that question and relates it to neural networks by
phrasing the question slightly differently:

Does the system need a neural network?

In a way, the second question is a form of the first question. When
considering if the right system has been built, the V&V practitioner should
consider what constitutes the 'right system' and if a neural network solution
is a part of that right system.

Given that a neural network solution is deemed appropriate for the
project, the next question is almost as important:

Which neural network architecture is the most appropriate?

52 Chapter 4

Addressing these two questions is the focus of this chapter.
Section 2.1 presents a high-level characterization of the types of

problems and applications for which neural network technology may be
deemed appropriate. The major characteristics of such problem domains
may be divided into three categories:

1. Adaptive vs. Fixed,
2. Parallel vs. Sequential, and
3. Complete vs. Incomplete.

Section 2.2 focuses upon the relationship and comparison of neural
networks to other computational models that are employed in the
development of intelligent systems. General constraints or conditions that
must be met to effectively use artificial neural networks are provided. A
series of tables provide a summary of this comparison.

Table 4-1 [Anderson 1992] presents a high-level comparison of the
neural network computational model with other prevalent computational
models. Table 4-2 presents a comparison of neural networks with the other
major intelligent system paradigms. Finally, Table 4-3 presents a
comparison that focuses specifically on neural networks and expert systems,
another widely employed computational model for the development of
intelligent systems.

Section 3 outlines the more common artificial neural network
architectures. They are organized in general categories based upon the type
of application for which each is appropriate. Most applications of neural
networks tend to fall into the following five categories:

1. Predicdon,
2. Classification,
3. Data association,
4. Data conceptualization, and
5. Data filtering.

Table 4-4 summarizes the differences between these network categories
and indicates which of the more common network topologies belong to
which primary category. The categories support consideration of the various
networks architectures in terms of how they best match these appHcation
categories. Also considered are complex systems that incorporate more than
one of the above categories.

Section 4 examines some applications in which neural network systems
have been used. This section provides concrete examples of the previously

Validation of Neural Networks via Taxonomic Evaluation 53

presented concepts and relationships among various problem domains,
intelligent systems architectures, etc.

Four broad areas of application are reviewed:

1. Pattern Recognition, which includes vision, speech, character
recognition, target discrimination and recognition.

2. Signal Analysis, which includes language processing, and overlaps
(utilizes) pattern recognition.

3. Robotics, which integrates control systems, pattern recognition, and
signal analysis.

4. Expert Systems, which includes complex analysis such as medical
diagnosis or system diagnosis.

2. AUTOMATED TAXONOMIC EVALUATION OF
NEURAL NETWORKS

This chapter should be seen as a concise literature survey with inclusion
of the beginning of guidance for the verification and validation (V&V)
practitioner. Over 50 conference publications, presentations. World Wide
Web publications and journal articles were collected and analyzed for this
discussion. The work by Anderson [1992] and Martinez [1989] contain very
useful information. This research work can form the basis of the discussion
of the two major questions:

• Does the system need a neural network?
• Which neural network architecture is the most appropriate?

2.1 High-Level Problem Characterization

The first step towards assessing the selection of a neural network for a
project may reside with analyzing the problem domain of the entire system
or specific system that contains the neural network component. By
analyzing the type of problem being solved, a V&V practitioner can assess
one of the first questions in regards to the validation of the neural network:
should a neural network have been used by the project in the first place?

The major characteristics of problem domains may be divided into three
categories:

1. Adaptive vs. Fixed,
2. Parallel vs. Sequential, and

54 Chapter 4

3. Complete vs. Incomplete.

The following subsections explore each of these major defining features.
To facilitate evaluation of the appropriateness for a neural network solution,
the practitioner may first want to study the problem area and to classify it in
terms of the following features.

2.1.1 Adaptive vs. Fixed

An adaptive application is typically one that learns over time and thus
can continue to change upon receipt of new inputs. Adaptive systems may
need to accommodate dynamic operating conditions, provide capabilities to
handle unforeseen events or situations, or learn a specific function that
cannot be well defined by system developers. On the other hand, a fixed
application is one where the internal mapping function that identifies a
specific output with a given input does not change with time. A fixed
application can be repeatable and have a well-known mathematical function
to perform.

2.1.2 Parallel vs. Sequential

This application feature differentiates between applications that are
naturally, and thus more efficiently, parallel and those that are more
naturally sequential. At the lowest level, all applications can be performed
in a parallel fashion, since all can be represented by simple mapping
functions. On the other hand, any set can be well ordered and thus
serialized, according to the Well-Ordering Theorem: [PlanetMath 2004]

If X is any set whatsoever, then there exists a well ordering of X . The
well ordering theorem is equivalent to the axiom of choice.

However, either approach to a particular problem may not always lend
itself to an efficient realization. Neural networks are fundamentally parallel
in nature, but the cascading of impulses through a network may be viewed as
sequential. Consequently, neural networks are dual-hybrids that can be
viewed functional- and implementation-wise from either perspective for
different purposes.

2.1.3 Complete vs. Incomplete

A given application is termed complete if a specific input-output
mapping is required for all or nearly all of the permutations of the input
variables. An example of such an application is integer multiplication where

Validation of Neural Networks via Taxonomic Evaluation 55

each set of integer inputs produces only one integer output. This mapping of
output to input is specific for each possible combination of numbers using a
well-defined procedure for producing the output.

An incomplete application does not have a mapping for all possible input
permutations. With incomplete applications, only subsets of input
permutations have specific output assignments. An example of an
incomplete application is one that contains input combinations that are
impossible to obtain or has input combinations that have no relevance or are
known as 'don't care' states. Rule-based systems and control and decision
systems can be incomplete.

The complete-incomplete dichotomy is not perfect. Rather, a spectrum of
hybrid applications exist that exhibit characteristics of both complete and
incomplete applications. Pattern recognition systems can be either complete
or incomplete. A complete pattern recognition problem would be one that
dealt with color identification given RGB values assigned into one of 255
bins. An incomplete pattern recognition problem would be one that
identified only 4-door cars and ignored trucks, 2-door cars, and motorcycles.

2.1.4 Classification of Applications

Fig. 4-1 [Martinez 1989] depicts the previously discussed application
domain characteristics along with an indication of the computational model
currently considered most effective for that class of application. Martinez
suggests that neural network models seem most appropriate for application
domains that are incomplete and adaptive, with neural networks able to fit
into either the parallel or sequential application.

2.1.5 V&V Practitioner Considerations on Problem
Characterization

Certainly, a project may have an adequate reason for using a neural
network even if it does not fit well within the incomplete-adaptive-parallel
or incomplete-adapdve-sequential categories. However, a problem space
that is otherwise characterized may require further explanation. At this stage
of the V&V process, the goal for the practitioner should be to intercept the
project that uses a neural network solution simply because it sounds like a
good idea.

56 Chapter 4

Applicat ion D o m a i n

Incomplete

/ \
Adaptive Fixed

/ \ / \

Complete

y \
Adaptive Fixed

/ \ / \
Parallel \ Parallel \ Parallel \ Parallel \

1
Neural

1 Networks

Sequential 1 Sequential

Custom Circuit,

Multiplexors

Von Neumann Computer,

Special Purpose Hardware.

Ne >ural Net wor ks

L

state Machine,

Custom Circuits

1
RAM

Sequential 1
1 ROM 1

Sequential

Von Neumann

Computer

Special Purpose

Hardware |

Figure 4-1. Classification of Applications [Martinez 1989]

2.1.6 Considerations of the Complete Characterization

Distinctions are necessary to describe the complete problem space:
simple, moderate, and complex. A simple complete problem is one that
contains a limited number of input-output matchings. A complex complete
problem is one that contains, for practical purposes, an unlimited number of
possible pairings. A moderate complete problem is one that falls between
these two categories.

Because processing power and capabilities are always improving, clear
identification of the differences between simple, moderate, and complex
may be too difficult. This would be up to the practitioner who would have to
judge the problem domain. Use of a neural network for a simple, possibly
even moderately complete problem may be acceptable, but a different
solution would be needed for a complex complete problem. Perhaps a
project would be better served through use of multiple neural networks, or a
combination of neural networks and other technologies, as opposed to a
single neural network solution. A reduction of the complexity within the
problem space through conversion to an incomplete problem might simplify
the application.

Validation of Neural Networks via Taxonomic Evaluation 57

2.1.7 Considerations of the Incomplete Characterization

As previously noted in Section 2.1.3, an incomplete application does not
contain all possible permutations across the input space. Consequently, the
amount of knowledge that a neural network needs to learn becomes smaller
and thus easier to obtain. Some problems will naturally be incomplete while
others might be complete problems that can be reduced to an incomplete
problem.

A neural network system can be designed for generalization, the ability
of the system to correctly or acceptably handle inputs that it has not seen
previously. In an adaptive system, new input combinations may be safely
incorporated into the network's knowledge provided that issues concerned
with stability and convergence have been addressed in the design of the
learning algorithm. For fixed applications, selection of appropriate training
data and training procedures may be sufficient to ensure the network can
properly, or at least adequately, handle unseen inputs. In both situations,
classes of input combinations can be ignored given that the network is
capable of generalization. The intention is that when novel input
combinations do appear, the network is able to maintain correct operation.

Generalization may employ two different metaphors: one based on
similarity, the other on critical values. The most intuitive forms of
generalization follow from the incompleteness of applications. Input
permutations can be deemed similar from different perspectives, such as
hamming distance or Euclidean distance. Some neural network architectures
rely upon this similarity to achieve generalization [Hinton 1984]. Hamming,
or similarity, based generalization schemes set the output of a novel instance
according to how closely it matches a stored prototype or stable state in a
system. This type of generalization is employed in such approaches as
Hop field networks [Hopfield 1982], Boltzmann machines [Hinton 1984],
competitive learning [Rumelhart 1986], and case-based reasoning
[Hammond 1989].

Another way to reduce an input space to an incomplete application comes
from observations of the behaviors of biological nervous systems. These
systems often discriminate between large amounts of inputs by giving higher
priority to particular nervous system inputs such as pain or discomfort. A
complete system becomes an incomplete system by extracting critical
variables from across the entire input space and ignoring the other
combinations as don't care states. Approaches that seek to discover general
critical features that can direct generalization of novel inputs include back-
propagation [Rummelhart 1986], ID3 [Quinlan 1986], and the A"* algorithms
[Michalski 1983].

58 Chapter 4

2.1.8 Considerations of Adaptive vs. Fixed Applications

Classification of a problem as fixed does not necessarily indicate the
usage of a neural network system is improper. Consider the IPCS Gen 1
system (see Foreword for fiill description) that made use of a fixed network,
the pre-trained neural network (PTNN) system. The FINN was chosen
because the underlying mathematical function describing the relationship of
stability and control derivatives with specific aircraft sensor data was not
well known before hand. Yet, for a healthy aircraft under nominal
conditions, this equation does not change. The network was trained on real
aircraft data so that it could be used to learn the relationships, and then it was
fixed and not allowed to adapt during operation. The network was a suitable
solution for this fixed application.

Adaptive applications fit perfectly with the neural network solution. One
of the main reasons is because artificial neural networks themselves are
based upon biological neural networks that are designed for dynamic
environments. If a project chooses to use a neural network within an
adaptive application, a project may need no further explanation beyond
describing the properties of the system that make it adaptive.

2.2 Artificial Neural Netw^orks vs. Other Computational
Models

Another way to assess the appropriateness of a neural network solution is
to compare the neural network against other computing approaches, some of
which may be more suitable solutions for the problem at hand. This section
briefly compares the various intelligent system computational models from a
variety of perspectives via a series of comparison tables.

2.2.1 Comparison of Computing Approaches

In Table 4-1 [Anderson 1992] a high-level comparison of the neural
network computational model is presented along with other prevalent
computational models.

Some of the characteristics in the table, such as parallel vs. sequential,
were discussed in Secfion 2.1.2, others require some explanation. The
reasoning model characteristic identifies a key difference between the
traditional approach and the neural network approach. Traditional software
is designed in a logical, step-by-step iterative refinement manner. While the
neural network software itself exists within logical programming, its
operation and adaptation place it within the realm of statistical probability
where it reasons in a Gestalt fashion, operating upon geometrical

Validation of Neural Networks via Taxonomic Evaluation 59

similarities. While this statistical nature makes this approach useful for
many applications, it also is one of the major reasons why few of those
applications are safety- and mission-critical systems.

Table 4-1. Comparison of Computing Approaches [Anderson 1992]
Characteristics Traditional Computing Artificial Neural Networks
Processing Style Sequential Parallel
Reasoning Model Logically Gestalt
Functions via Rules Images

Concepts Pictures
Calculations Controls

Learning Method by rules (didactically) by example (socratically)
Applications Accounting sensor processing

word processing speech recognition
math inventory pattern recognition
digital communications text recognition

A consideration that a V&V practitioner may have is how a particular
problem benefits from having a neural network solution as opposed to the
standard form of software, and if this advantage outweighs the problems of
applying the traditional approach. Traditional software is applied
everywhere a problem can be broken down into a series of directions.
Neural network software has only permeated the software market in areas
that are too difficult to solve with logical approaches.

The V&V practitioner should be aware that scientific techniques are
being developed which can transform fixed neural networks into logical
programming. Much of this discussion lies within the Chapter 8 dealing
with formal methods. Transformation of the network into logical
programming could facilitate application of traditional V&V activities. It
could also lend support for a project that wishes to make use of neural
networks over a traditional system, but has too many constraints to allow the
soft computing approach.

2.2.2 Comparison of Intelligent System Approaches

Table 4-2 presents a comparison of Fuzzy Systems (FS), Neural
Networks (NN), Genetic Algorithms (GA), Conventional Control Theory,
and Symbolic AI [Hines 2004]. The various characteristics are rated using
the fuzzy terms: good (G), slightly good (SG), slightly bad (SB) and bad (B).

Table 4-2 indicates that neural networks appear to be excellent
candidates for non-linear problems, especially for those domains that have
some need for fault-tolerance, real-time operation, and internal knowledge
representation. In terms of fault-tolerance, neural networks can be tolerant
to transient bad data, adapt to accommodate true system change, and based

60 Chapter 4

upon the complexity of the architecture, usually have redundancy for
internal knowledge because of the weights and internal connections.

Table 4-2. Comparison of Intelligent System Approaches [Hines 2004]
Intelligent
Systems

FS NN GA Control
Theory

Symbolic
AI

Mathematical
Model
Knowledge
Representation
Learning Ability
Expert
Knowledge
Non-linearity
Optimization
Ability
Fault-Tolerance
Uncertainty-
tolerance
Real-Time
Operation

SG

B

G
G

G
B

G
G

G

B

G

B
B

G
SG

G
G

SG

B

SG

SB
B

G
G

G
G

SB

G

B

SB
SB

B
SB

B
B

G

SB

B

G
G

SB
B

B
B

B

Since this document deals mainly with neural networks, in-depth
discussions of the different forms of intelligent systems are not presented.
There may even be debate regarding the ratings within Table 4-2. Still, the
practitioner can use this table to begin the evaluation of whether the neural
network approach would be more suitable than another soft computing
solution. As a minimum, the practitioner may ask a project to discuss the
alternatives and then explain why neural networks are chosen.

2.2.3 Comparisons of Expert Systems and Neural Networks

In Table 4-3 [Anderson 1992] a comparison that is specific to neural
networks and expert systems is presented. Expert systems are another
widely employed computational model for the development of intelligent
systems.

The V&V practitioner should be aware that an adapting neural network
might drift into a less than optimum state of operation. Such drifting may be
in small incremental steps that are not readily detectible. Furthermore,
neural networks may adapt into knowledge that upon careful examination
may be considered incorrect or erroneous. On the other hand, expert
systems are considered static, so insertion of new data is done with trusted
knowledge, or knowledge that is considered correct for usage.

Validation of Neural Networks via Taxonomic Evaluation 61

Table 4-3. Comparisons of Expert Systems and Neural Networks [Anderson 1992]
Characteristics Von Neumann Architecture

(Expert Systems)
Artificial Neural Networks

Processors

Processing Approach

Connections

Self Learning

Fault Tolerance

Neurobiology in Design
Programming

Ability to Be Fast

VLSI (traditional processors)

Separate;
Processes problem rule one
at a one time;
sequential
Externally programmable

Only algorithmic parameters
modified
None without special
processors

None
Rule based approach;
complicated

Requires big processors

Artificial Neural Networks;
variety of technologies;
hardware development is on
going
Separate:
Multiple, simultaneously

Dynamically self-
programming
Continuously adaptable

Significant in the very nature
of the interconnected
neurons
Moderate
Self-programming; but
network must be set up
properly
Requires multiple custom-
built chips

Anderson's table is not complete and some of the entries may require
system-specific consideration. Anderson states that for artificial neural
networks to be fast, they require multiple custom-built chips. While neural
network-specific hardware does exist and can provide immense speed
increases, the definition of fast may be better left to the discretion of the
system designers. In the cases of some currently developed systems,ya^^ has
been achievable using current ruggedized* processors without specialization
and together with existing ruggedized operating systems like VxWorks. Just
as neural networks can operate fast without the necessity of custom-built
processors, so too can expert systems. However, the table stands as a good
beginning point for consideration. If the system undergoing evaluation has
any of the above characteristics as requirements (i.e., fault tolerance), the
table might aid the practitioner in evaluating the choice of using a neural
network.

^ Hardware hardened for safety- and mission-critical use against electromagnetic
interference, extreme temperatures, vibrations, etc. and is usually one generation behind
the current state of the art.

62 Chapter 4

1.1 A Artificial Neural Network Requirements vs. Other
Computational Models

While the identification of a complete set of neural network requirements
within this chapter is not possible, the V&V practitioner should be aware of
the special requirements that neural networks have that may not exist for the
other computational solutions. Each special requirement is an area where
the V&V practitioner can perform some level of evaluation on the project to
ensure that it has adequately addressed these needs.

• Availability of adequate sizes of training and testing data. All neural
network development requires some amount of data to determine what
the network architecture will be, to infuse the network with knowledge,
to evaluate the network during training, etc. This data has to be relevant
to the problem at hand. For example, F-18 flight data is probably not
going to be very useful for an autonomous vehicle launched into orbit.

• An understanding of the problem to guide neural network architecture
selection. A sufficient understanding of the problem to be addressed by
the neural network must be clearly exhibited within the project
documentation. As later sections of this chapter will reveal, lack of an
understanding of the problem domain will leave an almost unlimited set
of choices for the neural network architecture type.

• An understanding by the neural network developers of training
techniques and network parameter selection. Lack of this understanding
can lead to long development times or project delays, improper network
configurations, failure to find adequate solutions, etc.

• A mathematical neural network development environment. The
environment should be capable of allowing neural network simulation,
application of the learning algorithms, evaluation of the neural network
performance, the ability to save, load, and modify neural network data
files, etc.

• Careful considerations of required computing resources for the target
platform. These considerations include processor speed, memory
utilization, data storage, and real-time considerations such as threaded
processes, process communication, and the possible risks and hazard a
real-time adaptive neural network can face.

The V&V practitioner may expand or modify the above list, but once a
project has addressed these concerns, the selection of a neural network
solution can be judged satisfactory.

Validation of Neural Networks via Taxonomic Evaluation 63

3. NETWORK SELECTION

Neural networks originally were designed to emulate the biological
neural network. They all contain a connection of neurons and use some kind
of mathematical function to adapt and to perform a recall or output when
given an input stimulus. Since the first introduction, several hundred
different neural network designs have been explored. Each one exhibits
particular advantages given certain circumstances.

The responsibility of the neural network developer includes the selection
of appropriate network architecture. The responsibility of the V&V
practitioner is to ensure that selection is based upon sound mathematical
principles, acceptable given the problem domain, and able to ensure correct
operation for a given architecture.

New neural network architectures are continually being introduced into
the research literature, and existing architectures are being employed in
novel ways. Consequently, any guidance quickly can become outdated and
incorrect. Generally, the suitability of a particular neural network
architecture for a given application depends upon several factors, including:
the number of neurons, the connection matrix between the neurons, the
algorithm used for learning, and the internal transfer functions of the
network.

The following sections outline some of the most common artificial neural
networks. They are organized into general categories of application. These
categories are not meant to be comprehensive, but to suggest which neural
network architectures would be more appropriate matches to specific
application domains.

Anderson [1992] offers an excellent framework for discussion of neural
network architecture selection. That framework provides the basis for this
section's discussion. Anderson classifies the major applications of neural
networks into the five general categories:

1. Prediction,
2. Classification,
3. Data association,
4. Data conceptualization and
5. Data filtering.

Table 4-4 presents a summary of how the more common network
topologies fit within the five general categories. The table is far from
complete as there are too many architectures to consider, but it will
hopefully serve as a basic guide to improve evaluation by the V&V
practitioner.

64 Chapter 4

Table 4-4. Neural Network Selection
Neural Network
Type
Prediction

Classification

Specific Examples

Back-propagation
Delta Bar Delta
Extended Delta Bar Delta
Directed Random Search
Higher Order Neural Networks
Self-Organizing Map into Back-
propagation
Learning Vector Quantization
Counter-propagation
Probabilistic Neural Networks

Use for Neural Network
Type
Use input values to predict
some output (e.g. pick the
best stocks in the market,
predict weather, identify
people with cancer risks.
etc.)

Use input values to
determine the classification
(e.g. is the input the letter A,

Data Association

Data
Conceptualization

Data Filtering

Hopfield
Boltzmann Machine
Hamming Network
Bidirectional Associative Memory
Spatio-temporal Pattern Recognition

Adaptive Resonance Network
Self-Organizing Map

Recirculation

is the blob of video data a
plane and what kind of plane
is it)
Like Classification but it also
recognizes data that contains
errors (e.g. not only identify
the characters that were
scanned but identify when
the scanner isn't working
properly)
Analyze the inputs so that
grouping relationships can
be inferred (e.g. extract from
a database the names of
those most likely to buy a
particular product)
Smooth an input signal (e.g.
take the noise out of a
telephone signal)

Note that some neural network architectures can be employed across
multiple domain classifications. For example the self-organizing map is
employed both as a predictor and for data conceptualization. Omission of a
particular neural network architecture from a classification is not meant to
imply that architecture is unsuitable.

The dimension of the neural network selection process is further
complicated by the fact that an application domain may depend upon
functionality from several of the above categories. For example, a flight
controller may perform data filtering and classification. How such complex
systems are decomposed can greatly impact the choice of appropriate neural
network architectures. Furthermore, how they interact, e.g., the output of a
data filter may feed a classifier, that in turn feeds a predictor, the output of
which ultimately may be fed back as part of a training update to the data
filter.

Validation of Neural Networks via Taxonomic Evaluation 65

A comprehensive theoretical discussion (beyond the scope of this
chapter) of the various neural network computational models is found in
General purpose computation with neural networks: a survey of complexity
theoretic results by Sima and Pekka [2003]. This document, which has been
updated several times since its first publishing in 1994, provides an
exhaustive annotated bibliography of the major theoretical results that have
been obtained in the general field of neural networks, and identifies
outstanding problems and open questions that currently remain.

The following subsections describe these five general categories of
application for neural networks outlined in Table 4-4.

3.1 Networks for Prediction

Prediction is a common reason for use of neural network technology.
Prediction occurs because the network learns to approximate a function
describing a set of data, and then given a stimulus or input, can compute
values anywhere along this function. Areas where one might find predictive
neural networks are in error minimization, vehicle health monitoring, and
optimum decision-making. Prediction success depends on several variables,
including the quality of the training data and the architecture of the neural
network.

3.1.1 Feed-forward, Back-propagation

ThQ feed forward architecture [Parker 1987, Rumelhart 1986] is one of
the more commonly used structures within neural network development.
Applications using feed-forward architectures include image processing,
prediction, signal processing, and robotics. The feed-forward architecture
has been proven quite capable of approximating non-linear functions.

Fig. 4-2 shows an example diagram of the feed-forward architecture.
Most of these networks contain multiple layers and are often known by
another name, the multi-layer perceptron. These layers include an input
layer, an output layer, and internal layers called hidden layers. While the
network can contain unlimited hidden layers, research by Sima [2003]
explains that no more than four layers are needed to solve complex
problems. The feed-forward is named because inputs propagate from input
layer to hidden layer to output layer in a forward progression. During
training, back-propagation can be used to carry errors backwards through the
network layers to allow for weight adjustment.

66 Chapter 4

V&V Considerations
While the feed-forward architecture is widely used, there areas of

concern on which a V&V practitioner should focus. First, the selection of
the number of hidden layers and the number or neurons within each layer is
more of an art than a science. Similarly, the V&V analysis of these choices
is likewise an art form.

One approach which designers may be inclined to use is manual
iterations of design choices with each next choice an attempt to improve
over the previous choice. Anderson [1992] identifies three rules that can be
used to guide this development.

1. The number of neurons in a hidden layer should be congruent to the
complexity of the relationship between the input data and the output data.
As this relationship becomes more complex, more neurons should be
added.

2. Generalization of the feed-forward neural network can be achieved by
adding in more hidden layers, provided that the function being learned
can be separated into multiple stages. This means that if the function can
be considered a combination of functions itself, then each function
should have a hidden layer devoted to approximating it.

3. The number of neurons in each hidden layer is related to the amount of
available training data. Eq. (4.1) is a good rule-of-thumb:

i^,_ Number of Training Data Pairs (A\\
^ (Number of Input Neurons + Number of Output Neurons) • a

Where Nt is the number of neurons in layer / and a is a factor from one to
fifty, selected based upon the noisiness of the data. Nearly noiseless data
would use values between one and five, typically noisy data would use a
value often, and data with more significant noise would use values of 25
or 50. Note that too many neurons within a hidden layer will simply
cause the training set to be memorized (with worst cases being one
neuron for each input-output training pair).

Validation of Neural Networks via Taxonomic Evaluation 67

Connections

.--J Hidden Hidden
nput V ^ Layer 1 Layer 2
Layer

Figure 4-2. An Example Feed-forward Back-propagation Network

The above rules are not only appropriate for the use of the neural network
designer, but also for the V&V practitioner. Hopefully, the neural network
designer has documented these heuristics for the V&V practitioner to
review.

Other problems with this architecture is the number of back-propagation
training iterations that may be required due to the network attempting to
generalize from too many input-output training data pairs. As characteristic
of non-linear systems, network learning may converge to a local minimum,
which may or may not be sufficiently near the best or acceptable solution.

3.1.2 Higher-order Neural Networks

Feed-forward neural networks are capable of handling linear separations
within the input space, but are unable to generate decision regions which are
concave or which are multiply connected. A neural network architecture
capable of approximating higher-order functions such as polynomial
equations was first proposed by Ivakhnenko [1971] which led to networks
containing high-order processing units [Giles and Maxwell 1987] or higher-
order neural networks (HONN).

A simple HONN could be thought of as describing an elliptical curve
region. The HONN function that it learns can include square terms, cubic

68 Chapter 4

terms, and higher orders. These terms are comprised of mathematical
combinations of the inputs into the network as shown in Fig. 4-3.

Sigma Layer
(Summation)

Pi Layer
(Product)

Input
Layer

Figure 4-3. An Example Higher-Order Neural Network

The combinations of inputs can occur in any fashion, given that the
inputs are only multiplied against one another. For example, with Fig. 4-3,
if the three inputs are labeled A, B, and C, then possible input patterns could
be: A, B, C, AB, AC, BC, AA, BB, CC, AAB, AAC, etc. The squared and
cubic terms are then simply an input multiplied against itself. The
polynomial equation then becomes a weighted summation of these
individual input patterns. The weights are what the neural network adapts
until an appropriate function for the problem is found. An example equation
(4.2) is given by:

Output = w^A + wjB -\- W'^C + w^AA + wq^AB + • • • + 'N A^B^C^{42)

Even more exotic components to the polynomial function can be
obtained by first applying another mathematical function to the inputs.
These could include functions like SIN, COS, TAN, or even LOG. An
example Eq. (4.3) could then be:

Output =w^A+W2 sin(A) + w^B + w^ \og(B)-\- w^Asin(B)-^ ••• (4.3)

Validation of Neural Networks via Taxonomic Evaluation 69

V&V Considerations
Higher-order neural networks can consume large amounts of computer

resources if they are designed to be overly inclusive of all the possible
permutations of the input space. Each neuron in the input layer can be
comprised of many multiplication and division operations which when
accumulated can begin to consume valuable processing time.

Additionally, HONNs of second-order or higher will contain many more
weight parameters than first-order neural networks. As higher-orders are
used, the explosion in the weight space creates a computational increase and
this becomes another difficulty in using the HONN.

There will always be a balance between the complexity of the basis
functions formed by the input layer and real-time limitations. The
compensating benefit is that it is possible to arrange for the response of the
neurons to be invariant to various transformations of the input, such as
translations, rotations, and scalings [Bishop 1995].

3,2 Networks for Classification

Classification problems involve identification and assessment of a
situation given an observation of data. Different classification problems
include biometric identification, sorting out hostile targets from benign
targets, and quality control.

3.2.1 Learning Vector Quantization

The Learning Vector Quantization (LVQ) neural network architecture
was created by Kohonen [1988]. Kohonen is also the creator the Self-
Organizing Map found in Section 3.4.2. The LVQ algorithm is meant for a
statistical classification or recognition method by clustering the input data
space into class regions.

A diagram of the LVQ network is shown in Fig. 4-4. Like most of the
neural network architectures, the LVQ network contains an input layer and
an output layer. Each neuron in the output layer represents an individual
classification or decision. The middle layer, called a Kohonen layer,
contains a number of neurons, the actual number being related to the
complexity of the problem space.

70 Chapter 4

Output
Layer

Kohonen
Layer

Input
Layer

Figure 4-4. An Example Learning Vector Quantization Network

The LVQ network is designed for supervised training where the network
is presented with a learning sample containing an input stimulus and a
classification. Based upon the input stimulus, a neuron within the Kohonen
layer is selected as the best matching unit, the closest neuron to the stimulus.
A second best matching unit is also selected. A learning algorithm is then
applied to the weights of the neurons to move one closer towards the training
classification, and the other one away from the training classification. There
are several different types of LVQ algorithms such as LVQl, LVQ2 and
LVQ3, and they each differ in how the weights are updated.

V&V Considerations
The V&V practitioner should identify if the project choosing to use an

LVQ network has considered the effect of the complexity of the problem.
More complex solutions will require more neurons within the Kohonen
layer. Too complex of a problem could need a burdensome computational
requirement. A reduction in the input space parameters through principle
component analysis might solve this problem.

The project should have also considered proper selection of the particular
LVQ algorithm. LVQ2 was designed for optimized classification separation
but should only be used with a small value for the learning rate and a
restricted number of training steps [Kohonen 1988]. LVQl and LVQ3 are
more robust processes and can accept larger number of training steps.

Validation of Neural Networks via Taxonomic Evaluation 71

3.2.2 Counter-propagation Network

The counter-propagation network, developed by Hecht-Nielson [1988],
may be viewed as a competitive neural network that combines the
functionality of a self-programming lookup table with the additional ability
to interpolate between entries. The counter-propagation network tries to
perform complex pattern classification but with a reduced network structure
and processing time [Anderson 1992].

During the unsupervised competitive learning, the winning neurons are
chosen by the Kohonen layer, which functions like a Kohonen neural
network. However, not only the weights of the Kohonen layer but also the
weights of the output layer are adapted in order to become closer to the
output value of the presented object.

The first counter-propagation network consisted of a bi-directional
mapping between the input and output layers [Chen 2001]. In essence, while
data is presented to the input layer to generate a classification pattern on the
output layer, the output layer in turn would accept an additional input vector
and generate an output classification on the network's input layer. The
counter-propagation network derives its name from this counter-posing flow
of information through its structure.

An example network is shown on the next page in Fig. 4-5. The
unidirectional counter-propagation network generally is implemented with
three layers. The inputs must undergo a normalization to ensure the
Kohonen layer can learn the correct class [Anderson 1992]. In some
implementations, where the inputs have not been normalized before they
enter the network, a fourth layer sometimes is incorporated. The main layers
include an input buffer layer, a self-organizing Kohonen layer, and an output
layer that uses the Delta Rule to modify its incoming connection weights.
Sometimes this layer is called a Grossberg Outstar layer.

Hech-Neilsen's [1988] goal was to address weaknesses of the back-
propagation network after which counter-propagation neural network is
modeled. The back-propagation neural network is susceptible to over-fitting
and the need for significant training epochs in some applications. This is
particularly characteristic of situations where the relationships between
inputs and outputs are subtle, and yet predictions must be accurate. Counter-
propagation is an alternative technique for pattern recognition.

This approach leverages advantages of both the Kohonen unsupervised
competitive learning technique, which is good in feature mapping, and the
delta rule or Widrow-Hoff rule for supervised learning. The counter-
propagation neural network has been demonstrated to perform better than
back-propagation in some applications because of its unsupervised learning
capability. The operation for the counter-propagation network is similar to

72 Chapter 4

that of the Learning Vector Quantization network in that the middle
Kohonen layer acts as an adaptive look-up table, finding the closest fit to an
input stimulus and outputting its equivalent mapping [Ellingsen 1994].

Output
Layer

(only 1 neuron
generates an output)

Kohonen
Layer

(only 1 winner is activated)

Figure 4-5. An Example Counter-propagation Network

V&V Considerations
The V&V practitioner should ensure that proper analysis has been done

regarding the input layer of a counter-propagation network. The number of
neurons in this layer is related to the number of independent variables that
describe the input space. Presumably, the number of parameters is selected
based upon some variable analysis technique such as principle component
analysis. If there are too many parameters used to train the network, the
network may be unable to reach an adequate generalized solution within
computational time limits. If there are too few parameters then a generalized
solution may not be reachable at all.

Proper scaling should be applied to the inputs to alleviate any problems
from the Kohonen layer. Since this layer will likely identify winning

Validation of Neural Networks via Taxonomic Evaluation 73

neurons based upon a distance metric, unsealed input parameters with larger
values could skew the neuron selection and decrease success.

Another consideration for the practitioner is the potential for neurons
within the Kohonen layer to become over-extended and represent improper
clustering on the inputs. If the learning algorithm is not set up properly, then
neurons within the Kohonen layer could begin to represent several classes
instead of one neuron per class. If this happens, the output from the neural
network might be an erroneous mixture of multiple classes.

3,3 Networks for Data Association

Data association builds upon data classification by including one
additional step. In some situations the data that comes into the system may
contain errors that are more than simply noisy content. For example, the
errors may be due to omissions, incorrect values, or some other defect with
the data source. Data association is intended to overcome such difficulties.
The strategy is for the neural network to learn a set of expected values that
then constrain it to generate an acceptable (i.e., corrected) output within this
questionable set. The goal is that data with imperfections can be corrected
back to one of the expected outputs.

3.3.1 Hopfield Network

The Hopfield Network, developed by Hopfield [1982], was designed for
pattern completion, auto-association, and the solving of optimization
problems, such as determining the shortest path with the famous traveling
salesman problem. The network is based upon energy concepts and parallels
drawn from dynamical physical systems. A neuron in the Hopfield neural
network changes state only if the overall energy, or internal weight change,
of the state space is decreasing. Element state changes thus are designed to
diminish the total energy level of the neural network.

Fig. 4-6 shows a basic Hopfield network where each neuron is connected
to all other neurons. Originally, each processing element produced output in
a binary (zero-one) format. Binary output restrictions can be relaxed with
the use of a sigmoid-based transfer function.

74 Chapter 4

Figure 4-6. An Example Hopfield Network

V&V Considerations
The V&V practitioner should be cognizant of a few potential problems

with the Hopfield neural network architecture:

1. The number of patterns that can be stored and accurately recalled is
severely limited to approximately fifteen percent of the number of
processing elements in the Hopfield layer [Anderson 1992].

2. The Hopfield network is capable of oscillations if the weights are not
selected properly.

3. Stable equilibrium states can be influenced by selection of bounded
activation functions and constraint conditions on the interconnection
matrix.

4. The Hopfield network stability is also related to the similarity of the
training patterns.

Maintaining a fifteen percent upper bound on the number of neurons and
selecting highly orthogonal pattern sets can mitigate these limitations.

Validation of Neural Networks via Taxonomic Evaluation 75

3.3.2 Boltzmann Machine

The Boltzmann machine is similar to the Hopfield network with the
addition of a simulated annealing technique that searches the pattern layer's
state space for a global minimum. Annealing is a concept borrowed from
materials science. Under annealing, a material is heated to a very high
temperature where atoms form and break bonds due to the higher energy
levels. The material is then slowly cooled, coercing the atoms to form stable
configurations. Similarly, the Boltzmann machine uses a simulated
annealing and tends to gravitate to an improved set of values with successive
data iterations through the system.

When the trained Hopfield network is presented with a partial pattern, the
network will complete the missing information.

V&V Considerations
The previously discussed problems and limitations of the Hopfield

network also apply to the Boltzmann machine. The Boltzmann machine
makes uses of a temperature variable that is very akin to a learning rate.
This variable controls the energy, or amount of internal weight change,
within the network. This variable is set high initially and decreases over
time. Proper selection of this variable may be an area for evaluation.

3.3.3 Hamming Network

The Hamming Network developed by Lippman [1987] in the mid 1980's
is another version of the Hopfield neural network architecture. The
difference is that a maximum likelihood classifier is added to the input layers
of the network.

The Hamming distance metric, which is often used in signal processing,
is the bit-by-bit distance between two binary vectors. When applied to a
neural network, one binary vector is a target pattern and the second vector is
a measured pattern. This measured pattern is classified to a category based
upon its closeness with the learned training patterns.

A typical hamming network is shown in Fig. 4-7 on the next page. The
number of network input layer nodes equals the number of separable binary
features on which classification is to be based. The internal category layer is
fully connected with the input layer and fully connected within that layer (all
category neurons connect to one another). Each neuron within the category
layer connects to only one output neuron.

The number of classifications the network is to learn also dictates the
number of neurons within the category layer. This constitutes a significant
specialization of the Hopfield architecture where the number of neurons in

76 Chapter 4

the middle layer is equal to the number of neurons in the input layer. The
number of neurons in the output layer is equal to the number of neurons in
the category layer.

i

<

i

) C
i

}S
i

3 <

B i a s i ^ x _ v C ~ x ^

\ i k i i k

)

) Bias

Output
Layer

Cetegory Layer
(fully connected)

A Input
J Layer

Figure 4-7. An Example Hamming Network

The neurons in the output layer compete with one another to determine
which neuron activates, and thus performs the classification.

V&V Considerations
The Hamming network has some improvements over the Hopfield neural

network:

1. The Hamming network makes use of fewer category layer neurons
because of its specialization,

2. The Hamming network is a little more insensitive to randomness, and
3. The Hamming network is both faster and more accurate than the

Hopfield network [Anderson 1992].

However, the Hamming network, like the Boltzmann machine still shares
the same disadvantages as those identified with the Hopfield neural network.

Validation of Neural Networks via Taxonomic Evaluation

3.3.4 Bi-directional Associative Memory

77

The bi-directional associative memory (BAM) model developed by
Kosko [1987] is another generalization of the Hopfield model. An example
of a BAM neural network is diagrammed in Fig. 4-8.

Output
Layer

Hidden
Layer 2

Hidden
Layer 1

Input
Layer

Figure 4-8. An Example Bi-directional Associative Memory

The BAM is capable of recalling one piece of information when given
another piece. For example, the network might recall a person's face when
given their voice signature. The advantage to using a BAM neural network
is that if the input information is noisy or otherwise partially
missing/corrupted, the BAM might be able to correct the input information
and retrieve the associated information.

The name bi-directional comes from the manner in which information is
recalled from the network. Information passes into the BAM through the
input layer, is processed in a hidden layer, these inputs can be passed into a
second layer, and then back again from the second layer into the first. This
continues until there are no further changes in the weights of the units within
the two layers.

78 Chapter 4

V&V Considerations
As with the Hopfield network, the BAM network can incorrectly

determine a pattern when input information which complements the specific
pattern is given to the network. The BAM network can also suffer from
crosstalk when patterns that are close to each other are applied to the
network. In this case, the similar patterns can create an erroneous stable
state within the network stabilizing on meaningless vectors [Freeman 1991].

3.3.5 Spatio-temporal Pattern Recognition (Avalanche)

The Avalanche network depicted in Fig. 4-9 on the next page is a result
of Grossberg [1970]. The purpose for development was driven by efforts to
account for the temporal processing of information capable by the biological
brain. Hecht-Nielsen later applied this network to time-varying signals such
as radar applications, resulting in the spatio-temporal pattern recognition
network [Hecht-Nielsen 1986].

Spatio-temporal patterns are patterns that are changing across space and
time. An example would be human speech where the voice of the human
speaker changes based upon what they are saying and how they are saying it.
Other signals can change across time including sonar patterns and video
imagery.

The spatio-temporal pattern network is comprised of a Kohonen layer
that can extract spatially and temporally correlated features. Subsequent
layers of the network then learn to categorize these features making it
possible to recognize and classify similar patterns.

V&V Considerations
Guidance for this network is limited, but several factors will need to be

addressed by a project wishing to use a spatio-temporal approach:

1. The number of patterns that must be learned and how this affects the
number of neurons within the network's Kohonen layer

2. Application of different forms of training (learning single temporal
sequences vs. learning multiple temporal sequences

3. Specific approaches to the design of a spatio-temporal structure as there
are many different variants

4. Computational resource requirements.

Validation of Neural Networks via Taxonomic Evaluation 79

Bias

Input
Layer

Figure 4-9. An Example Spatio-temporal Pattern Network

3.4 Networks for Data Conceptualization

Data conceptualization is a data mining technique. It doesn't have any
strong definitions of data description, or how the data is related to one
another. Instead the neural network develops a functional understanding of
how pieces of data are related. Clustering similar data into meaningful
groups that are connected via some previously undefined characteristic
would be one form of data conceptualization.

3.4.1 Adaptive Resonance Theory Network

A problem with the back-propagation approach to neural network
learning is that when the environment of the network changes, to
accommodate this change the neural network must undergo retraining. To
learn new patterns, the network might just be trained on the most recent
patterns in its environment. This would result in the newest patterns being
best remembered and the older patterns slowly being forgotten. Another
approach might be to retrain the network upon all the patterns at once, but
this is computational expensive and not practical for most situations.

The Adaptive Resonance Theory (ART) network, developed by Grossberg
[1976] is an attempt to solve this issue. The basic premise with the ART
approach is that learning can be incremental with new learning adding to
existing learning rather than overwriting it. Two ART neural network

80 Chapter 4

architectures have been developed: ART-1 and ART-2. ART-1 works with
binary patterns while ART-2 is for continuous patterns. There are also many
other variants of the neural network including inclusion of fuzzy logic in the
Fuzzy ART and Fuzzy ARTMAP.

The ART network is a recurrent network where inputs are passed from
the first layer of the network, the feature representation field, to the second
layer of the network, the category representation field, and then back to the
feature representation field as shown in Fig. 4-10. ART networks make use
of unsupervised learning. The term adaptive resonance is used to describe
when the category layer and feature layer are mutually reinforcing each
other and have reached a stable state.

Category Representation
Layer

Feature Representation
Layer

Figure 4-10. An Example ART Neural Network

V&V Considerations
The V&V practitioner must consider the effects of noisy data on the ART

network as noise can cause the network to become confused when trying to
match a pattern it has already learned. A vigilance parameter is used to
control how the network reacts to difference within the pattern classes. High
vigilance causes the network to be aware of small differences while low
vigilance causes the network to only be aware of large differences. If the
vigilance parameter is not set optimally, then the network may be overcome
by noise or it could misidentify patterns.

The ART-1 has a limitadon in its ability to be robust [Paul 2003]. Within
ART-1 a single neuron within the category representation layer handles a
complete pattern classification. This can be considered a limit on the
network's fault tolerance, as there is no secondary storage in neighboring
neurons.

Validation of Neural Networks via Taxonomic Evaluation 81

3.4.2 Self-organizing Map

Neural networks known as self-organized feature maps or self-organizing
maps (SOMs) are designed as topology representing networks whose roles
are to learn the topology of an input space with perfect preservation. In this
sense, they learn the function that describes a map of the input space.

Developed by Kohonen [1988] the SOM belongs to a class of networks
known as competitive neural networks. Unlike the feed-forward neural
networks, competitive neural networks operate under a winner-take-all
learning algorithm. When the network receives an input stimulus, it
searches throughout the network structure looking for a neuron that is closest
to this input. This neuron is known as the best matching unit (BMU) and the
network will adjust this unit, and its neighborhood comprised of neurons
connected to the BMU. In this way, the input space becomes compressed by
being represented by neurons spatially.

An example of an SOM is seen in Fig. 4-11. SOMs make use of
unsupervised learning because they do not require a specific output during
adaptation. Because of this, SOMs are very good at data compression and
identifying underlying clusters of data in an input space.

Figure 4-11. An Example SOM Network

V&V Considerations
There are different forms of the SOM architecture, but they all share

some common considerations that the V&V practitioner may want to be
aware of. First, these networks are usually designed to grow by adding new
neurons into the network over time. This can lead to a network expand in
size beyond its computational capabilities, both in regards to memory
utilization and processor time requirements.

82 Chapter 4

There are usually several variables which control the learning and
growing of the SOM. Determination of an optimum set of controlling
parameters can take a significant amount of study. A project may want to
perform experiments to guide selection of learning rates, forgetting
constants, and error thresholds.

3.5 Networks for Data Filtering

Data filtering problems require that two or more pieces of information be
separated from a single source. Removal of noise from a transmitted
message requires filtering. Error in a system could be thought of as noise
and a neural network solution may try to remove the error by correcting or
compensating for it from another piece of information.

3.5.1 Recirculation Neural Networks

Hinton [1988] gives two criticisms against back-propagation neural
networks: (1) they require the selection of desired outputs for supervised
training and (2) their very nature of passing back errors along the same
paths, which propagate forward inputs into the network, make developing
back-propagation neural networks in hardware difficult. The solution to the
second problem was the Recirculation neural network, shown in Fig. 4-12.

Output
Layer

Hidden
Layer

Visible
Layer

Input
Layer

Figure 4-12. An Example Recirculation Network

Validation of Neural Networks via Taxonomic Evaluation 83

The recirculation network contains a visible layer and a hidden layer.
Hinton [1988] described the process by which additional visible-hidden
layer combinations can occur where the hidden layer of a lower layer forms
the visible layer of a higher layer so the neural network can scale. The
visible and hidden neurons are fully connected. In order to facilitate the
network's implementation into hardware, the same group of neurons used
for the visible neurons are used for the output neurons. The weight update
on the visible neurons is then done in a feed-forward progression based on
the calculations of the hidden layer. The data from the visible layer is
recirculated back to the same neurons (now within the output layer) giving
rise to the name of this network architecture.

The hidden layer learns to represent the data passed on by the visible
layer. For applications that want to compress these representations, fewer
neurons in the hidden layer than in the visible layer can be used [Anderson
1992]. Because the network can perform compression, the network can^be
thought of as acting like a low bandpass filter with a transition point given
by the number of neurons within the hidden layer.

V&V Considerations
Limited literature has been found regarding use of the recirculation

neural network since its inception in 1988, leaving this architecture as young
and perhaps not well explored. Any project that makes use of this neural
network type will need to ensure that assumptions taken in [Hinton 1988] are
reasonable. The main assumption is that the recirculation network can
perform back-propagation given a linear functional constrain for neurons in
the visible layer, the weight matrix between the visible and hidden neurons
is the symmetrical, and the visible neurons have a high regression. Hinton
[1988] found that the network performs a back-propagation-like learning
when the visible neurons are non-linear, but this evidence was somewhat
more difficult to explain.

3.6 Others

The five general categories of application are not the only areas where
neural networks are used. Because neural networks can be trained to
minimize an error function, they can be used in optimization scenarios where
the error is simply a cost Sanction that the system developers want to
improve. Neural networks have also been used in sensor failure detection,
identification, and accommodation problems to improve the fault-tolerance
of aircraft. Neural networks can also be combined with genetic algorithms,
expert systems, and fiizzy logic to create sophisticated complex solutions. It

84 Chapter 4

could be argued, however, that the V&V practitioner could decompose any
neural network solution into one of the five basic classes.

4. HOW ARTIFICIAL NEURAL NETWORKS ARE
BEING USED

Many of the problem domains in which neural networks are being
employed involve applications where answers are by their nature nebulous—
or at least, are not 100 percent certain. Neural network solutions are being
employed because they perform better than alternative computational
models, rather than because they y'\Q\6. perfect solutions.

Loan approval is an example where neural networks have been shown to
produce better results than existing technologies, yet they still are not 100%
accurate. Banks have long used experts to identify the likelihood of a
successful loan payback from a borrowing entity. Sometimes this
knowledge has even been transformed into an expert system, but still lending
institutions look for an improved accuracy in predicting bad loans.
Predictions that are 90% accurate would be an improvement over other
current selection processes. Kemsely [1992] discusses how neural network
solutions improved bad loan prediction and how neural network
improvements have led to their adoption by credit card companies as a part
of an application screening process.

To provide the V&V practitioner some familiarity with neural network
uses, four broad application areas are reviewed:

1. Pattern recognition, which includes vision, speech, character
recognition, and target discrimination and recognition.

2. Signal Analysis, which includes language processing, and overlaps
pattern recognition.

3. Robotics, which integrates control systems, pattern recognition, and
signal analysis.

4. Expert Systems, which includes complex analysis such as medical
diagnosis or system diagnosis.

The choice of example applications considered here is intended to
complement Section 3 that analyzed the major characteristics and potential
limitations of the prevalent neural network architectures and learning
methods, and the major characteristics of problem domains to which neural
network solutions could be deemed appropriate. The above broad areas are
not disjoint. Each is complex, and necessarily draws upon the other problem
domains.

Validation of Neural Networks via Taxonomic Evaluation 85

4.1 Pattern Recognition

Pattern recognition includes such areas as vision, speech, and character
recognition, as well as target discrimination and recognition.

The V&V practitioner may see neural networks being used for pattern
recognition activities. One example comes from the JFK airport where
neural networks were used to detect bombs by recognizing a pattern from the
data generated by gamma ray sensors. In this case the neural network was
trained to identify small variances that it associated with the presence of a
bomb.

A second example is that of a trained back-propagation neural network
that was used to provide a probability that a patient in a hospital was
experiencing an actual heart attack. The neural network was trained upon
data collected from emergency rooms. From this data the network discerns
patterns to assist doctors in identifying the real attacks from the false alarms.

4.1.1 Quality Control

Quality control within manufacturing is concerned with ensuring that the
product on the assembly line meets a desired specification. This
specification can be written to describe a product's shape, size, color,
texture, etc. Neural networks can be trained to recognize good examples and
through pattern recognition can detect when a product fails to match the
example.

Neural network quality control systems never tire and can be easily
deployed and produce consistent measurements. These systems are
excellent candidates to replace the human inspector, who can become
distracted or overwhelmed to perform the same job.

4.1.2 Character Recognition

Having computers capable of reading human written language can
improve the human-computer interface that will lead to more ubiquitous
computing solutions. One of the ways that can accomplish this is through
character recognition systems that make use of neural network technology.

Character recognition can be used as part of a paper document scanning
technology known as optical character recognition. In this technology, paper
documents are first scanned, converted into some intermediary computer
readable form, and then processed by neural networks looking for
alphabetical patterns to identify what letter or number is represented. These
systems can be quite complicated given that every human has a
distinguishing writing style that can vary from very neat to very sloppy.

86 Chapter 4

Another area where neural networks can be used within character
recognition is in direct human-to-computer interfaces such as the notepad or
palm computing devices that have recently begun being sold. These devices
translate the written input in real-time with the added advantage of instant
feedback to allow the user to correct improper conversions.

Anderson [1992] cites several more examples including a credit card
reader with a 98-99% accuracy, systems which can read cursive, and neural
networks that have been developed to interpret Asian language characters.
These characters can be much more difficult than the roman-based languages
because they use far more intricate combinations of brush strokes.

4.1.3 Language Processing

Like character recognition, language processing also has a generally
fixed set of patterns that can be interpreted and converted by neural network
systems. Instead of the patterns being made up of images representing
characters or words, language is made up of phonetic patterns that comprise
letters, syllables, and words.

Language processing has matured to a point where it is somewhat
common. More recently, neural networks are found in interactive voice
response systems where many speakers use a reduced subset of language,
namely, the digits " 1 " through "0," the English alphabet and place names
(e.g. proper names of states and major cities). Word processing applications
can perform speech-to-text conversions to provide highly useful digital
dictation applications. One of the hopes behind development of neural
networks that are able to translate speech is to bridge the gap between
humans and computers even more by providing a direct voice-to-command
interface. With this technology pilots can communicate orders to their
vehicle or ground control can describe commands to robotic satellites.

4.2 Signal Processing

Signal processing is an application area that will be discussed separate
from pattern recognition, even though the two share computational
similarities. For this discussion the difference will be based upon the
transformation of the raw signal data. Signal processing applications do
something to transform this data and then make a decision, prediction, etc.
while pattern recognition systems can perform an action on the raw data
without transformation.

Signal analysis encompasses applications that can collect and analyze
sensor data, sometimes for feedback into the system or for decision-making
purposes. Kemsley [1992] identifies a signal processing application for

Validation of Neural Networks via Taxonomic Evaluation 87

signal recognition and classification where target recognition occurs through
interpretation of a reflected signal such as radar. More recently, neural nets
have used to recognize a person by the gait of their walking.

A likely area for neural networks with signal processing is in noise
reduction. An adaptive neural network could learn the underlying behavior
describing the noise function, and then remove this function from the data
signal.

Another application area for neural networks with regards to signal
processing is that of data compression. Some neural network data
compression techniques train the network on raw data in an unsupervised
manner - without guidance, allowing the network to figure out how best to
perform the compression. Data sets can experience dimension reduction and
via internal data clustering, groups of similar data can be represented by
fewer pieces of data. The DCS network within the IPCS system can be
thought of as performing data compressions as it associates stability and
control derivatives into clustered regions of the flight envelope.

Data compression is not without some drawbacks. Reducing a ten-
dimensional data set to seven dimensions can save on data storage, but when
the data is decompressed to the original higher dimension, some of the
information is lost. The advantage in using a neural network approach is
that if the underlying compression mechanism isn't well known, the neural
network is able to implement an approach through adaptation.

Gelenbe [2004] discusses the use of neural networks for the
compression/decompression of image data used within videoconferencing,
HDTV, and videophones. Gelenbe suggests that the popularity of
employing neural networks in image compression is primarily due to their
learning nature. Carrato [1992] provides an example where a feed-forward
neural network model was able to achieve a 16:1 compression ratio on
several images.

The V&V practitioner may see projects that employ neural networks in
the areas of noise reduction and data compression, especially when
considering that future space missions will utilize a wide array of
instrumentation each with increasing precision. NASA may use neural
networks for noise reduction of telemetry data, satellite data feeds, or
transmissions that have traveled long distances through deep space. As the
precision increases and the size of the data collected grows, the neural
network data compression techniques might offset some of the associated
problems.

88 Chapter 4

4.3 Robotics

Robotics is another area in which a V&V practitioner likely will see
extensive use of neural network technology. Robotics integrates several
complex functions including: control systems, pattern recognition, and signal
analysis. Robotics also utilizes many different intelligent system
technologies where specific forms of intelligent software are employed to
solve very specific problems, yet the component systems are expected to
work together as a whole. Neural networks often are employed because of
their capabilities to adapt to new situations, to obtain and maintain
knowledge, and to generalize beyond their original training.

Beyond the complex realm of autonomous systems, neural networks are
being deployed in a wide range of servo-control applications. These range
from sophisticated aerospace applications such as the IPCS, to various
mobility support systems such as anti-lock breaking systems in automobiles,
to thermostats that adapt to environmental conditions.

Neural networks are not only embedded in many robotics systems in
manufacturing, they are often involved in other areas of process control, for
example, shop floor planning [Jain 1998] and diagnosis [Zhang 1995].

4.3.1 Autonomous Vehicles

The name of the research and production field that uses robotic vehicle
technology is autonomous vehicles. Two areas within autonomous vehicles
are robotic ground vehicles and unmanned-aerial (and aquatic) vehicles
(UAV).

The Defense Advanced Research Projects Agency (DARPA) recently
sponsored a robotic competition called the Grand Challenge [DARPA 2003]
to promote the development of autonomous vehicle technologies. Contest
entrants had to design a vehicle that could traverse a desert route in less than
ten hours, with no human interface or control, deciding its own navigation,
and handle varying terrain conditions and obstacles. Thirteen entries were
allowed to compete in the race, but ultimately none of them managed to
succeed. Still, the possibilities of employing unmanned robots for combat or
reconnaissance maintains a worthy goal and DARPA plans to host the
competition again next year.

NASA has a particular interest in developing autonomous robotic
exploration because of the time-delays that can be experienced by ground
control as they manually direct a rover or satellite to perform complex
functions. Good example cases where robotic vehicle technology could
have been employed are the recent NASA Mars rovers. Spirit and
Opportunity. The planet-to-planet time delay between Earth and Mars is

Validation of Neural Networks via Taxonomic Evaluation 89

around 12 minutes. The time delay situation is even worse as the mission
extends to the outer planets. Very likely robotic exploration will be an area
where the V&V practitioner will see neural networks being employed.

The development of UAVs will become one of the major areas to employ
neural network technology. Primarily, this is because the technology has
matured sufficiently that companies like Boeing now are prepared to include
neural network technology in their military development. The success of the
US Air Force unmanned reconnaissance aircraft, the Globalhawk, fiarther
encourages development in this area.

4.3.2 Manipulator Trajectory Control

Kemsely [1992] reports on neural networks being used in the area of
robotic manipulator trajectory control. The design of a robot's kinematics is
very difficult and time consuming. If neural networks are used, they may
save valuable development time and solve the problem on their own because
of adaptability and generalization.

Consider a NASA rover with an instrument arm that extends to collect
data from its environment. As that arm moves, an algorithm controls where
it can move, how fast it can move, and knows how it can move at the next
step. If the manipulator should somehow become changed due to collision,
vibration, internal damage, or even software failure, the algorithm has to be
changed to accommodate this. Trying to account for all the possibilities of
failure can very nearly, if not completely, make traditional algorithm
development impossible. Adaptable intelligent systems could re-learn the
functionality on their own.

In addition to failure, another dynamic consideration for manipulator
control is obstacle avoidance. Instead of the changes in the system due to a
failure, the system has to be able to change behavior given differing
environmental conditions or objects. Much like the failure scenario, having
an adaptable algorithm can alleviate much of the complexity of designing a
control algorithm that accounts for every possible scenario.

4.3.3 Intelligent Flight Control

Intelligent flight control is listed under robotics because in most of these
systems, the neural networks act autonomously to change the behavior of the
aircraft. NASA has been studying intelligent flight control for at least the
past ten years. These systems can vary in the degree of control the neural
network is given within the system.

The IPCS Gen 1 system used two different neural networks. As this was
one of the first flight-tested neural network flight control systems, strong

90 Chapter 4

limitations were placed upon the neural networks within the system. The
PTNN was fixed and did not adapt during system operation. Instead of
computing aircraft gains and feeding them directly into surface controls, the
PTNN only provided data to other parts of the flight controller that then
carried out their own computations. The DCS only augmented the
knowledge of the PTNN. It too was limited in its effect on the system.

The second generation allowed the neural network more control within
the system. The job of the online adaptive component was to improve error
tracking and provide direct feedback into a dynamic inversion module. This
dynamic inversion module computed the aircraft controls and the neural
networks were a more integral part of that computation than they were for
the first generation.

Subsequent generations will probably make the neural network modules
even more integral to the system. Their continued use and rise in importance
within intelligent flight control is tied directly to the success of the V&V
practitioner to certify the system. These neural network solutions will not
fade away because the research conducted by NASA has shown that great
improvements can be made to a flight control system through adaptation to
accommodate failure or damage.

4.4 Expert Systems

Expert Systems are generally thought of as being symbolic, rule-based
systems. However, neural networks also can be trained to perform expert
tasks—^tasks that have been viewed as requiring some level of expertise, or
knowledge (knowledge-based systems). Of course, the manner in which the
expertise is encoded in a neural network is radically different than a set of
human-readable rules. Their use includes such complex analysis as required
for medical diagnosis, system diagnosis, and financial analysis.

Sometimes the required knowledge is not explicitly documented, or even
consciously known, but must be extracted from actual data. This is the
realm of data mining [Miiller 2000]. In contrast to the prior discussion of
pattern recognition, where at least the pattern to be recognized is known,
data mining is focused on identifying previously unrecognized patterns.

Group Method of Data Handling theory and its applications is one
example of efforts at the propagation of inductive self-organizing methods to
the solution of complex practical problems [Madala 1994].

4.4.1 Diagnosis

One such diagnostic application is a diagnosis system that can detect
engine misfire simply from the noise. Kemsley [1992] discusses the system

Validation of Neural Networks via Taxonomic Evaluation 91

developed by Odin Corp., which works to detect misfires on engines that run
upwards of 10,000 rpms. The benefit is that misfires are thought to be a
leading cause of pollution and detection and accommodation of misfires
could reduce the problem.

A most likely area involving diagnosis that the V&V practitioner will
encounter is in the area of intelligent vehicle health monitoring. Systems
that are expected to operate for long periods of time without human
interaction will require this technology in order to detect failures in the
system and make corrections. Expected benefits are for satellites, remote
robotic exploration, and even military and commercial aircraft that can
diagnose an impending problem and report it immediately to the pilot.

Another field within neural network diagnosis is the recognition of
patterns within the sensor data of the medical industry [Lisboa 1999]. A
neural network is now being used in the scanning of PAP smears. This
network attempts to do a better job at reading the smears than can the
average lab technician. Missed diagnosis in this industry can be a serious
problem. In many cases, a professional must perceive patterns from noise,
such as identifying a fracture from an X-ray or cancer from an X-ray
"shadow." Neural networks promise, particularly when faster hardware
becomes available, help in many areas of the medical profession where data
is hard to read.

In some situations, the diagnosis system is merely used for filtering out
false-positives rather than being the upfront evaluation. This is because the
system is considered more trustable when it isn't making a life-or-death
diagnosis. The V&V practitioner may encounter this technology as it moves
into the realm of first stage detection.

4.4.2 Financial

While it is unlikely that a V&V practitioner will see neural networks
projects within the realm of financial analysis, this commercial area does
deserve some recognition. As mentioned during the introduction to this
section, lending institutions are making use of neural networks to identify
expected success/failure of possible loans. Telemarketers also make use of
similar technology by applying data mining techniques to their databases to
identify combinations for higher positive responses to their product. This
includes identifying households with larger families, identifying better times
to call a household, and extracting information on household purchasing
habits, all much to the chagrin to the American public.

Neural networks are also used in making decisions within the financial
market such as stock trading and currency trading. By analyzing the trends
of a particular stock or currency, and learning the behavior of the item over

92 Chapter 4

time and against multiple variables, one can improve the decision making
process of selecting highs and lows. Anderson [1992] reports that the Daiwa
Research Institute developed a neural network stock system which scored up
to 20% better than the Nikkei average and can boost successful hit rates by
as much as 70 - 80%.

4.5 Mission-critical and Safety-critical Applications

Many more examples could be provided. Neural networks are being
more frequently developed and deployed in applications that would be
termed mission critical or safety critical While much concern still exists
regarding the employment of neural networks in such areas, the research to
address this need is making considerable progress. The following is a list of
recent survey papers covering various application areas where neural
network solutions now are finding ever-widening acceptance:

• Neural networks as data mining tools in drug design [Gasteiger 2003]
• An introduction to bio-inspired artificial neural network architectures

[Fasel 2003]
• Nonlinear image processing using artificial neural networks [De Ridder

2003]
• Logistic regression and artificial neural network classification models: a

methodology review [Dreiseitl 2002]
• Evaluation of inherent performance of intelligent medical decision

support systems: utilizing neural networks as an example [Smith 2003]
• Image processing with neural networks - a review [Egmont-Petersen

2002]
• Neural networks as an intelligence amplification tool: A review of

applications [Poulton 2002]
• A review of evidence of health benefit from artificial neural networks in

medical intervention [Lisboa 2002]
• Neural-network models of learning and memory: leading questions and

an emerging framework [Carpenter 2001]
• A brief overview and introduction to artificial neural networks [Buscema

2002]

Some of these papers not only discuss the employment of neural
networks in a particular application domain, but also consider the V&V
implications that their use raises for that application domain [Smith 2003;
Lisboa 2002].

Validation of Neural Networks via Taxonomic Evaluation 93

5. SUMMARY

The purpose of the material in this chapter is to aid the V&V practitioner
with the validation, of a proposed or implemented neural network-based
system. Validation involves the assessment of the appropriateness of a
particular neural network-based solution for the problem being solved

This chapter has presented a taxonomic overview of neural network
systems from multiple perspectives. Major characteristics of applications
and their solution via neural networks have been presented.

At the highest level, the issue addressed here is whether any neural
network architecture could be an appropriate choice for the problem being
solved. Given that a particular neural network model should be able to solve
the problem, the next major concern is to focus upon the supporting
requirements that should be addressed, e.g., the particular neural network
architecture.

REFERENCES

Anderson, Dave and George McNeil. 1992. Artificial Neural Networks Technology. Data &
Analysis Center for Software, Contract Number F30602-89-C-0082, August 20.

Bishop, CM. 1995. Neural Networks for Pattern Recognition. Oxford, NY: Oxford
University Press, England.

Buscema M. 2002. A Brief Overview and Introduction to Artificial Neural Networks.
SUBSTANCE USE & MISUSE 37 (8-10): 1093-1148.

Carpenter, G.A. 2002. Neural-Network Models Of Learning and Memory: Leading Questions
And An Emerging Framework. Trends in Cognitive Sciences. 5 (3): 114-118 MAR 2001.

Carrato, S. 1992. Neural Networks For Image Compression. In Gelenbe, E. (ed.) Neural
Networks: Advances and Applications 2, Elsevier North-Holland: 177-198.

Chen, Hong. 2001. Neural Networks for Digit Recognition: A Comparison Between Counter-
propagation and Back-propagation. Masters thesis. Computer Science Department,
Rochester Institute of Technology.

Cukic, Bojan, Brian J. Taylor, and Harhsinder Singh. 2002. Automated Generation of Test
Trajectories for Embedded Flight Control Systems. International Journal of Software
Engineering and Knowledge Engineering 12(2): 175-200.

DARPA. 2003. http://www.darpa.mil/grandchallenge/.
De Ridder, D., R.P.W. Duin, M. Egmont-Petersen, L.J. Van Vliet, and P.W. Verbeek. 2003.

Nonlinear Image Processing Using Artificial Neural Networks. Advances in Imaging and
Electron Physics 126: 351-450.

Dreiseitl, S. and L. Ohno-Machado. 2002. Logistic Regression and Artificial Neural Network
Classification Models: A Methodology Review. Journal of Biomedical Informatics 35 (5-
6): 352-359.

DeTienne, K.B., D.H. DeTienne, and S.A. Joshi. 2003. Neural Networks as Statistical Tools
For Business Researchers. Organizational Research Methods 6 (2): 236-265.

Egmont-Petersen, M., D. de Ridder, and H. Handels. 2002. Image Processing with Neural
Networks - a Review. Pattern Recognition 35 (10): 2279-2301.

94 Chapter 4

EUingsen, B.K. 1994. A Comparative Analysis of Backpropagation and Counterpropagation
Neural Networks. Neural Network World 4(6):1\9-134.

Fasel, B. An Introduction to Bio-inspired Artificial Neural Network Architectures. Acta
Neurologica Belgica 103 (1):6-12.

Freeman, James A., and D. Skapura. 1991. Neural Networks: Algorithms, Applications, and
Programming Techniques (Computation and Neural Systems Series). Addison-Wesley
Pub Co.

Gasteiger J., A. Teckentrup, L. Terfloth, and S. Spycher. 2003. Neural networks as Data
Mining Tools in Drug Design. Journal of Physical Organic Chemistry 16 (4):232-245.

Gelenbe, Erol, M. Sungur, and C. Cramer. 2004. Learning Random Networks for
Compression of Still and Moving Images, [cited 6 May 2004]. Available from World
Wide Web: (http://www.ee.duke.edu/-cec/research/neuralcompression/JPL/paper.html).

Giles, C. L. and T. Maxwell. 1987. Learning, Invariance, and Generalization in High Order
Neural Networks. Applied Optics 26(23)4972.

Grossberg, Stephen. 1970. Some Networks That Can Learn, Remember, and Reproduce any
Number of Complicated Space-Time Patterns, II. Studies in Applied Mathematics 49.

Grossberg, Stephen. 1976. Adaptive Pattern Classification and Universal Recoding: I. Parallel
Development and coding of Neural Feature Detectors. Biological Cybernetics 23.

Hammond, K. 1989. In Inside Case-Based Reasoning, Eds C.K. Riesbeck & R.C. Shank,
Hillsdale, NJ, Erlbaum.

Hecht-Nielsen, Robert. 1986. Nearest Matched Filter Classification of Spatio-temporal
Patterns. Special report published by Hecht-Nielsen Neuro-Computer Corporation, San
Diego, California.

Hecht-Nielsen, R. 1988. Applications of Counterpropagation Networks. Neural Networks
1:131-139.

Hines, Evor. 2004. Intelligent Systems Engineering (ES3770) Lecture Notes, University of
Warwick.

Hinton, G., T. Sejnowski, and D. Ackley. 1984. Boltzmann Machines: Constraint Satisfaction
Networks that Learn. Technical Report CMU-CS-84-119, CMU, Pittsburgh, PA.

Hinton, G.E., and J.L. McClelland. 1988. Learning Representations by Recirculation. Proc. of
the IEEE Conference on Neural Information Processing Systems, November 1988.

Hopfield, John J. 1982. Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences 79.

Ivakhnenko, A.G. 1971. Polynomial Theory of Complex Systems. IEEE Trans, on Systems,
Man, and Cybernetics l(4):364-378.

Jain, A. S., and S. Meeran. Job-Shop Scheduling Using Neural Networks. International
Journal of Production Research 36(5): 1249-1272.

Kemsely, D., T. R. Martinez, and D. M. Campbell. 1992. A Survey of Neural Network
Research and Fielded Applications. International Journal of Neural Networks
2(2/3/4): 123-133.

Kohonen, T. 1988. Self-Organization and Associative Memory, Second Edition. Springer-
Verlag, New York.

Kosko, Bart. 1987. Adaptive Bidirectional Associative Memories. Applied Optics 26.
Lippmann, Richard P. 1987. An Introduction to Computing with Neural Nets. IEEE ASSP

Magazine.
Lisboa, Paulo J.G., Emmanuel C. Ifeachor, and Piotr S. Szczepaniak (Eds). 1999. Artificial

Neural Networks in Biomedicine, Perspectives in Neural Computing Series. Springer-
Verlag.

Validation of Neural Networks via Taxonomic Evaluation 95

Lisboa, PJG. 2002. A Review of Evidence of Health Benefit from Artificial Neural Networks
in Medical Intervention. Neural Networks 15 (1):11-39.

Madala, H.R. and A.G. Ivakhnenko. 1994. Inductive Learning Algorithms for Complex
Systems Modeling. CRC Press.

Martinez, Tony. 1989. Neural Network Applicability: Classifying the Problem Space.
Proceedings of the lASTED International Symposium on Expert Systems and Neural
Networks.

Michalski, R.S. 1983. A Theory and Methodology of Inductive Learning. Artificial
Intelligence 20:\\\-\\6.

Miiller, J.-A. and F.Lemke. 2000. Self-Organizing Data Mining. BoD Hamburg.
Parker, D.B. 1987. Optimal Algorithms for Adaptive Networks: Second Order Back

Propagation, Second Order Direct Propagation and Second Order Hebbian Learning. Proc.
of the 1st ICNN, Volume II.

Paul, Jody. 2004. Adaptive Resonance Theory Course Notes [online]. Denver, CO:
Metropolitan State College of Denver, 2003 [cited May 10, 2004]. Available from the
World Wide Web: (http://www.jodypaul.com/cs/ai/ART.pdf).

PlanetMath.org. 2004. Zermelo's Well-Ordering Theorem [online], [cited April 20, 2004].
Available from the World Wide Web:
(http://planetmath.org/encvclopedia/WellOrderingPrinciple2.html).

Poulton M.M. 2002. Neural Networks as an Intelligence Amplification Tool: A Review of
Applications. Geophysics 67(3):979-993.

Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning 1:81-106.
Rumelhart, D. and McClelland J. 1986. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition. MIT Press, Cambridge, MA.
Seiffert, U. and B. Michaelis. 2001. Directed Random Search for Multiple Layer Perceptron

Training. In: D.J. Miller et al. (Eds): Neural Networks for Signal Processing XI. IEEE,
Piscataway, USA.

Sima, J. and P. Orponen. 2003. General Purpose Computation with Neural Networks: a
Survey of Complexity Theoretic Results. Neural Computation 15:2727-2778.

Smith A.E., CD. Nugent, and S.I. McClean. 2003. Evaluation of Inherent Performance of
Intelligent Medical Decision Support Systems: Utilizing Neural Networks as an Example.
Artificial Intelligence in Medicine 27(1): 1-27.

Zhang, H.C. and S. H. Huang. 1995. Applications of Neural Networks in Manufacturing: a
State-of-the-Art Survey. InternationalJournal of Production Research 33(3):705-728.

Chapter 5

STABILITY PROPERTIES OF NEURAL
NETWORKS

Edgar J. Fuller^ Sampath K. Yerramalla^, Bojan Cukic^
Department of Mathematics, West Virginia University,

^Lane Department of Computer Science and Electrical Engineering, West Virginia University

1. INTRODUCTION

Neural networks are key elements in the implementation of adaptive
software. Fixed structure neural networks such as multi-layer perceptrons
and higher-order neural networks have a well-established history as
controllers for a variety of systems in industry. More complicated neural
networks such as dynamic self-organizing maps and systems of neural
networks are being used as more flexible architectures are needed for
deployment in more complex environments. In this section, the stability and
convergence properties of a few classes of neural networks are explored and
an overview of the techniques used to analyze their behavior is given.

A common approach to analyzing neural network behavior is to view the
learning mechanism of the network as a dynamical system in the sense that
each neuron and weight in the network represents a state of the system and
each training adjustment represents a discrete differential equation for the
system.

!•! Lyapunov Stability

It is a general observation that the process of adaptation in online
learning neural networks resembles in many ways the behavior of dynamical
systems [Yerramalla 2003a]. Based on the interpretation of neural networks
as a dynamical system, the stability and convergence of online adaptation
can be considered as heuristic measures of correctness for the sake of system

98 Chapter 5

safety. The idea is to first characterize the process of online adaptation in
neural networks in the context of dynamical systems and then apply existing
dynamical system stability analysis techniques for neural network analysis.
One of the foremost dynamical stability analysis techniques is based on
Lyapunov stability theory. The interesting feature about Lyapunov stability
analysis is that it can be systematically applied to validate the existence (or
nonexistence) of stable states in dynamical systems [McConley 1998].

The objective of this chapter is to develop a framework for a non-
conventional V&V procedure suitable for evaluation and testing of non-
deterministic neural networks. Since the concept of applying Lyapunov
theory for stability analysis of neural networks is a relatively novel
validation approach, this section provides the reader with a basic
understanding of the fundamental concepts of stability according to
Lyapunov's theory. For additional details on the use of Lyapunov's theory
for stability analysis of dynamical systems the reader is referred to [Passino
1994].

1.2 Stability of Dynamical Systems

A dynamical system is an evolution rule on a set of states, the phase
space, defined as a function of time as a parameter. The evolution rule can
be deterministic or stochastic, depending on the nature of the system. A
system is deterministic if for each state in the phase space there is a unique
consequent, i.e., the evolution rule is a function taking a given state to a
unique, subsequent state. Stochastic systems are non-deterministic: a
standard example is the idealized coin toss. The process of adaptation in
neural networks evolves over time in an unpredictable manner, and therefore
is mostly stochastic and can be characterized in context of stochastic
dynamical systems.

The mathematical theory of stability analysis deals with validating the
existence (or nonexistence) of stable states within a dynamical system using
rigorous mathematical proofs and analysis techniques. Stability of a
dynamical system is usually defined in terms of the system's equilibrium
point and not the system. Therefore, it is necessary to understand the
definition of an equilibrium point of a dynamical system.

Definition 5.1 Equilibrium Point: Consider a nonlinear time-invariant
r IT'

system, x = / (x) , where x = [XpX2v9-^wJ ^̂ ^ ^^'^ states of the system,
/ : Q —> 9t" is a continuously differentiable function, and Q c 9t" is a
subset of Euclidean space. A point, x^ G Q , is an equilibrium point of the
system if / (x j = 0.

It should be noted that x^ is an equilibrium point : ^ x(/) = x^ is a
trajectory of the system. Considering the origin as the equilibrium point of

Stability Properties of Neural Networks 99

x = / (x) , i.e., x^ = 0 , the following definitions introduce the notion of
stability of dynamical systems. For further details on the concept of stability
of dynamical systems, the reader is referred to [Friedland 1996; Passino
1994].

Definition 5.2 Local Stability: If for every ^ > 0, and /̂ G 9t, there
exists d{£,t^)>0 such that if |x(/o)|< J then |x(/)|<6^ for all t>tQ,
then the equilibrium point x^ = 0 of the systemx = / (x) is said to be
locally stable at time t^.

The concept of stability given in Definition 5.2 is illustrated in Fig. 5-1,
where a system's trajectory starting close to the equilibrium is shown to
remain arbitrarily close. Note that in the case of Fig. 5-1, the equilibrium
point is the origin, x^ = (0,0) . An equilibrium state is unstable if the above
condition is not satisfied. In linear systems, instability means approaching
different trajectories arbitrarily close in any given time. However, this is not
the case with nonlinear systems, which makes nonlinear stability analysis a
challenge.

X2

-•^^

Qs Locally Stable

2 = Unstable

p = Asjmiptotically Stable

Figure 5-1. Graphical Illustration of the Concept of Local Stability for a Dynamical System
(The system's equilibrium point is assumed as the origin)

Definition 5.3 Local Asymptotic Stability: If the equilibrium point
x^ = 0 is locally stable and if for every /̂ G 9t, there exists d{t^) > 0 such
that if |X(/Q) |<(^ then |x(^)|-^0 as / —> ©o , then the equilibrium point
x^ = 0 is said to be locally asymptotically stable.

In other words, Definition 5.3 implies that a system trajectory starting
sufficiently close to the equilibrium point will eventually approach the
equilibrium point, i.e., the origin.

100 Chapters

Definition 5.4 Global Asymptotic Stability: If the equilibrium point
x^ = 0 is locally stable and if for every initial condition x(^o) , |x(^)| -> 0
as t ^ oo ^ then the equilibrium point x^ = 0 is said to be globally
asymptotically stable.

Definition 5.4 implies that if the asymptotic stability condition holds for
any initial condition, then it can be said the equilibrium point of the
dynamical system is global asymptotically stable.

1.3 Lyapunov Function Based Stability Analysis

Most of the previously discussed notions of stability are based on the
solution (equilibrium point) for the difference equation governing the system
dynamics. In general, it is inherently difficult to solve higher order
difference equations, and there is no guarantee for the existence of a solution
for certain higher order nonlinear difference equations. This difficulty in
finding a solution for the difference equations can be overcome by the
construction of a Lyapunov function. A unique feature about Lyapunov
function-based stability analysis is that one establishes conclusions about
trajectories of a system without actually finding the trajectories, i.e., solving
the difference equations.

Definition 5.5 Lyapunov Function: If V \%" -^^ is continually
differentiable and locally positive definite function around x^ = 0 such that
all sublevels of V are bounded and F(x) < 0 Vx, then all trajectories of
the system x = / (x) are bounded and V is called the Lyapunov function.

The relevant result of Lyapunov stability theory in terms of a Lyapunov
function is given in the following theorem. For a detailed proof for the
following theorem, the reader is referred to [Friedland 1996, Zubov 1957].

Theorem 5.1 Lyapunov Stability: If there exists a Lyapunov function
for the system x = / (x) , then x^ = 0 is said to be a stable equilibrium
point in the sense of Lyapunov.

According to Lyapunov theory, a system is said to be stable near a given
solution if all solutions of the state that begin nearby end up nearby. A good
measure representing the notion of "nearby" is the size of the domain of the
Lyapunov function by a Lyapunov function, V over the states of the system.

By constructing the function V, all trajectories of the system can be
guaranteed to converge to a stable state, i.e., if they lie in the domain of the
definition of V . The function V should be constructed keeping in mind that
it needs be scalar F : 9t X D ^ 9t and should be non-increasing over the
trajectories of the state space (at least negative semi-definite). This is
required in order to ensure that all limit points of any trajectory are
stationary. A strict Lyapunov function should force every trajectory to
asymptotically approach equilibrium state. Even for a non-strict Lyapunov

Stability Properties of Neural Networks 101

function, it is possible to guarantee convergence by LaSalle's invariance
principle. For detailed proofs for the following theorems, the reader is
referred to [Zubov 1957, Friedland 1996, Bhatia 1970].

Theorem 5.2 Asymptotic Stability: If x^ = 0 in addition to being
Lyapunov stable, V{x) is locally negative definite, then x^ = 0 is a
asymptotically stable equilibrium point.

Asymptotic stability adds the property that in a region surrounding a
solution of the dynamical system trajectories are approaching this given
solution asymptotically.

Theorem 5.3 Global Asymptotic Stability: If x^ = 0 in addition to
being Lyapunov stable, V{x) is negative definite in the entire state space
and limK(x) = 0, then x^ = 0 is a global asymptotically stable equilibrium
poinf."̂ ""

A notable difference between asymptotic and global asymptotic stability
is the fact that the latter implies that any trajectory beginning at any initial
point will converge asymptotically to the given solution unlike the former
where only those trajectories beginning in the neighborhood of the solution
approach the solution asymptotically. The types of stability defined above
have increasing property strength, i.e.. Global Asymptotic Stability =^
Asymptotic Stability => Lyapunov Stability. The reverse implication
however, does not necessarily hold.

Though the concept of Lyapunov stability was originally intended for use
in mathematical theory, it can be simplified for use in many practical
applications including neural networks [Yerramalla 2003a; Yu 2001]. In
mechanical systems, a Lyapunov function is considered as an energy-
minimizing term and in economy and finance evaluations it is considered as
a cost-minimizing term, and for neural networks, the construction of a
Lyapunov function can be based on the error-minimizing states of the neural
network learning.

The central goal of an adaptive system is to calculate the present state of
the system and determine a strategy to drive the system to a desired
operating state. It must be realized that by accommodating for changing
dynamics of the system, online adaptive components play a critical role in
the functionality of the adaptive system. Therefore, it is necessary to ensure
correct behavior of the online adaptive components before their deployment
into the actual safety-critical system [Hull 2002, Schumann 2002, Taylor
2003].

A provably stabilizing online adaptation ensures that the learning in an
embedded adaptive component converges to a stable state within a
reasonable amount of time without bifurcating towards instability. In the
context of the V&V of online adaptation, the goal of theoretical stability
analysis is to delineate stability boundaries of online adaptation for certain

102 Chapter 5

specific domains of adaptive system data using mathematical theories of
stability analysis.

1. APPLICATIONS TO FIXED TOPOLOGY
NEURAL NETWORKS

Several authors have applied Lyapunov theory to the study of neural
network behavior. Calise, et al. [Calise 2001] have shown that certain neural
networks with fixed connectivity such as Sigma-Pi neural networks evolve
stably over time. In their work, a traditional Sigma-Pi architecture is
adopted and an error measure for network performance is defined. Fig. 5-2
is a representation of a typical Sigma-Pi neural network.

Figure 5-2. A Sigma-Pi Neural Network with Inputs xl, x2, x3

In the figure, the nodes of the network (circles) take sums and products
of the inputs that are weighted by values associated to the connections
(arrows). These weights are modified during training using a back-
propagation algorithm which attempts to minimize the error of the network.
In this way a function, usually a polynomial of some specified degree, is
constructed that approximates the values of the data signal being analyzed
by the neural network. In [Kim 2003] the error between the signal and the
approximation is combined with the update rule to define a Lyapunov
function for the online neural network. The reader is referred to their work
for more details.

Stability Properties of Neural Networks 103

3. APPLICATION TO SELF-ORGANIZING MAPS

Self-organizing maps (SOM) pose a different kind of problem for this
type of analysis. Many authors have attempted to understand the behavior of
self-organizing maps using Lyapunov theory. Cottrell and others [Cottrell
1998] have shown that fixed topology self-organizing maps admit Lyapunov
functions only in dimension one. It is conjectured that no Lyapunov
function exists for higher dimensional fixed topology SOMs.

SOMs in their most general form are vector quantizers in the sense that
they partition a set of data into clusters that are then represented by vectors
called neurons that are then connected to each other. In the case of fixed
topology SOMs, there are a fixed number of neurons and each is connected
to the same set of neurons in the network for the entire training cycle.
Adaptation occurs when neurons are moved in order to find the minimum
Euclidean distance between that neuron and the data points it represents.
This best-matching neuron or best matching unit (BMU) for a subset of the
data is stimulated by the data in this way during training. In the case of
dynamic SOMs, the number of neurons may change as well as the
connectivity of the network. This allows for greater flexibility in training,
particularly when the data being analyzed is multi-dimensional.

An example of a dynamically changing SOM is the Dynamic Cell
Structures (DCS) neural network [Bruske 1995]. To illustrate how
Lyapunov theory can be applied here, the following questions should be
answered:

• How can a systematic approach to delineate stability boundaries of online
adaptation in a dynamic self-organizing neural network such as the DCS
be derived?

• To what specific domains of the adaptive system data are the delineated
stability boundaries confined?

It is observed as a part of the ongoing research that the learning process
in neural networks evolves over time in a manner similar to the behavior of
dynamical systems [Yerramalla 2003b, Yerramalla 2004]. The idea then is to
characterize neural network learning in the context of dynamical systems
and analyze its stability properties using dynamical system analysis
techniques. One of the foremost dynamical system stability analysis
techniques is Lyapunov's theory. The interesting feature about Lyapunov's
stability theory is that it can be systematically applied to validate the
existence (or nonexistence) of stable states in a dynamical system. The
research therefore, proposes the extension of the Lyapunov's stability theory

104 Chapters

for analysis of the stability properties of online learning DCS neural
network.

Due to the stochastic nature of learning in self-organizing neural
networks, the stability analysis in this chapter is restricted to neural network
adaptation from stationary or fixed data manifolds. Learning from a
stationary data manifold implies that once a certain data manifold is
presented to the online adaptive component (neural network), the
configuration of the data remains unchanged throughout the learning
process.

3,1 Dynamics of DCS Neural Network

This section aims to characterize the learning process in neural networks
in the context of a dynamical system. The first step in this stability analysis
is the identification of stable-states involved in the DCS neural network. The
learning process involved in the DCS was discussed elsewhere in this work.
A state-space representation is a commonly preferred method for
representation of the states within a dynamical system. It is important to
represent the states of the dynamical system (online learning neural network)
using a state-space representation technique as it can prove to be effective
during the construction of a Lyapunov ftinction.

Consider D-dimensional input and output manifolds, I c 9t and
0 c: 9t^, respectively. The DCS is a self-organizing neural network
consisting of neurons that are positioned in the output space O d 9t using
weight vectors. Consider N as the number of neurons in the DCS network at
any time. The weight vectors of the DCS neural network can be then be
represented as, w^EO(z9 t^ V / G {l,2,...,A^}. The lateral connections
between neurons in the DCS are expressed in terms of real constants known
as connection strengths, c^j = c^^ G [0,1] V/ ^ j i,je {l,2,..., A/̂ }. Unlike
feed-forward neural networks, the lateral connections between neurons in a
self-organizing neural network are not static but evolve over time [Ahrns
1995, Bruske 1995]. A D-dimensional DCS neural network consisting of N
neurons can therefore be represented in the output space O cz 9t using a
DxN position matrix, W^^^ 3 w^ and a NxN connection strength
matrix, Ĉ ^̂ ^̂ 3 c^. For a given input space I cz 9t , the DCS is essenfially
an undirected graph of W >̂̂ ^ and C^^^^ that can be defined in the
following manner.

Definition 5.5 DCS Neural Network Mapping: For a given input space,
1 c 9t^, the DCS neural network mapping is an undirected graph of W^̂ ^̂
and C^^^ , G (W ^ ^ ^ , C ^ ^ ^) : I e 9 t ^ -^ O C 9 t ^ that can be considered
as an Â ^̂ order neural network representation of the input manifold.

Stability Properties of Neural Networks 105

M cz I CI 9?^ in the output space, O c: 9t^ generated by assigning Â neural
units using the DCS training algorithm.

3.2 State-Space Representation of the DCS Neural
Network

Based on the Hebb and a Kohonen-like adaptation rules, a state-space
representation of the DCS neural network is provided. Let the states of the
DCS neural network due to the adaptation of weight vectors using a
Kohonen-like rule and the Hebb update be represented by x^ and x^
respectively. The dynamics of the state changes in the DCS due to the
adaptation of weight vectors using a Kohonen-like rule and the Hebb rule
can be represented in the following manner.

Ax^

A^
— Jwv^w^^c) (5.1)

• Jcv^ci^w) (5.2)

The nonlinear functions / ^ , / ^ : I d 9t -^ O cz 9t are continuous
and provide the required adjustments to the states x^ and x^ respectively
of the DCS neural network. Considering the DCS as a discrete-time
dynamical system, the states of the DCS training algorithm can be
represented in the following manner in a state-space representation form
using Eq. (5.1) and Eq. (5.2).

AX

A^

"Ax^"

At

_ At _

=
Jcv^c^^w)_

(5.3)

3.3 Construction of a Lyapunov Function for the DCS
Neural Network

Lyapunov's direct method (also known as Lyapunov's second method) in
particular can be easily and systematically appHed to validate the existence
of stable states of nonlinear dynamical systems. In order to extend its use for
the online learning DCS neural network, one first needs to construct a

106 Chapters

Lyapunov function based on the states of the neural network training
algorithm (Eq. 5.3).

The goal of the DCS is to overlay neurons (using weight vectors) over
the presented data manifold in a topology-preserving manner such that
nearby data patterns are mapped using neighboring neurons of the DCS
network [Ahrns 1995, Bruske 1995]. In order to generate a topology-
preserving feature map of the presented data manifold, M d I c: 9t^, the
DCS network is initialized with two neurons that are connected to each other
with connection strength of value 1. If it is determined that the error in the
DCS network falls below a predefined threshold, additional neurons are
introduced into the network. This process is repeated until the map
generated by the DCS reaches a pre-specified degree of accuracy in its
representation of the presented data [Yerramalla 2003b].

The addition of new neurons into the DCS network is based on resource
values, a local error associated with every DCS neuron. In most cases, the
Euclidean distance between the data patterns of the training data manifold,
m G M d I c 9?^ and the positions of the best matching units,
^hmu ^ ^DxN ^ O CI 9t scrvcs as a measure for resource. Since resource
is a measure of the local error associated with each neuron, an average
resource value can serve the purpose of a Lyapunov function for the DCS
neural network. While considering the DCS adaptation as a discrete-time
dynamical system, the end of a learning cycle followed by the addition of a
new neuron can be treated as a time step. A Lyapunov function for the DCS
can then be formulated in the following manner.

a
VmeM

n>-w,„,„(„)||

N
(5.4)

The Lyapunov function of Eq. (5.4) is the average resource value of the
neural network that in essence is a measure the amount of topology of the
input data manifold that is being preserved by the map generated by the
neural network. The constructed Lyapunov function of Eq. (5.4) is known in
the neural network community as the quantization error.

Using this framework, the following can be stated:
Theorem 5.4: Let ^(G,/): O e 9 t ^ ^ 9 t be a scalar function

constructed for the map G(M, W^^^, C^^^): I c St"" ^ O e gi""
generated by the online learning neural network from an input manifold
M c I d 9t^ . If M remains fixed, then for any^ > 0, an integer S>Q can
be found such that for all / > J , V{G, t) < £,

This result holds as long as the input data being trained by the neural
network is fixed. In the case of online training where data may be

Stability Properties of Neural Networks 107

dynamically changing as well, another approach must be taken. This is the
subject of another chapter in this work.

4, SUMMARY

Lyapunov theory is a powerful tool for understanding the stability of
neural networks. Once a measure of error is defined for the system, suitable
Lyapunov functions can be described which then provide a rigorous
characterization of network behavior across all of the possible set of states
for the network for which the Lyapunov function is defined. In combination
with probabilistic methods such as those of Schumann and Gupta
[Schumann 2003], a high degree of reliability may be obtained for systems
that integrate neural networks into their structure.

REFERENCES

Ahms, I., J. Bruske, and G. Sommer. 1995. "Online Learning with Dynamic Cell Structures".
In Proceedings of the International Conference on Artificial Neural Networks
(ICANN'95), Vol. 2, pp. 141-146, Paris.

Bhatia, N. P., and G. P. Szego. 1970. Stability Theory of Dynamical Systems. Springer-
Verlag, Berlin.

Bruske, J., and G. Sommer. 1995. Dynamic Cell Structures Learns a Perfectly Topology
Preserving Map. In Proceedings of the Advances in Neural Information Processing
Systems (NIPS'95), Vol. 7, No. 4, pp. 845-865.

Calise, Anthony, Naira Hovakimyan, and Moshe Idan. 2001. Adaptive Output Feedback
Control of Nonlinear Systems using Neural Networks. In Automatica Special Issue Neural
Networks for Feedback Control, Vol. 37, No. 8.

Cottrell, M., J.C. Fort, and G. Pages. 1998, Theoretical Aspects of the SOM Algorithm.
Neurocomputing Journal, Vol. 21, No. 1-3, pp.119-138, November.

Friedland, Bernard. 1996. Advanced Control System. Prentice Hall Inc.
Hull J., D. Ward, and R. R. Zakrzewski. 2002. Verification and Validation of Neural

Networks for Safety-Critical Applications. In proceedings of the American Control
Conference, Vol.6, No.8-10, pp. 4789-4794, May.

Kim, Nakwan. 2003. Improved Methods in Neural Network-Based Adaptive Output
Feedback Control, with Applications to Flight Control. PhD thesis, Georgia Institute of
Technology, School of Aerospace Engineering, Atlanta, GA, November.

McConley, M. W., B. D. Appleby, M. A. Dahleh, and E. Feron. 1998. Computational
Complexity of Lyapunov Stability Analysis Problems for a Class of Nonlinear Systems.
Industrial and Applied Mathematics Journal of Control and Optimization, Vol. 36, No. 6,
pp. 2176-2193.

Passino, K. M., N. Michel, and P. J. Antsaklis. 2002. Lyapunov Stability of a Class of
Discrete Event Systems. IEEE Transactions on Automatic Control, Vol. 39, No. 2,
February 1994.

108 Chapters

Schumann, J., and S. Nelson. Towards V&V of Neural Network Based Controllers.
Workshop on Self-Healing Systems.

Schumann, J., P. Gupta, and S. Nelson. 2003. On Verification & Validation of Neural
Network Based Controllers. In Proceedings of the Engineering Applications of Neural
Networks (EANN'03).

Taylor, B. J., and M. A. Darrah. 2003. Verification and Validation of Neural Networks: a
Sampling of Research in Progress. In Proceedings of the AeroSense, Orlando, FL, 21-25
April.

Yerramalla, S., E. Fuller, and B. Cukic, M. Mladenovski. 2003a. Lyapunov Analysis of
Neural Network Stability in an Adaptive Flight Control System. In Proceedings of the
Sixth Symposium of Self Stabilization Systems (SSS'03), June.

Yerramalla, S., E. Fuller, and B. Cukic. 2003b. Lyapunov Stability Analysis of DCS
Quantization Error. In Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN'03), July.

Yerramalla, Sampath, Edgar Fuller, Bojan Cukic, Yan Liu and Srikanth Gururajan, 2004. An
Approach to V&V of Embedded Adaptive Systems. Formal Approaches to Agent-Based
Systems (FAABS) III, Lecture Notes in Computer Science, Springer-Verlag.

Yu, Wen and X. Li., 2001. Some Stability Properties of Dynamic Neural Networks. IEEE
Transactions on Circuits and Systems: Part 1, Vol. 48, No. 2, pp. 256-259.

Zubov, V. L 1957. Methods of A. M. Lyapunov and Their Applications. U.S. Atomic Energy
Commission.

Chapter 6

NEURAL NETWORK VERIFICATION

James T. Smith
Institute for Scientific Research, Inc.

1. INTRODUCTION

Neural network-based systems have truly become mainstream with their
employment in safety- and mission-critical applications. Because a neural
network is an empirical model, the model design and data requirements
replace the functions served by knowledge representation and acquisition in
symbolic reasoning. Issues and considerations that are deemed substantial
regarding the assessment of neural network systems include:

• Assessing the quality of training and testing data,
• Relating training and testing data to defined safety margins, and
• Tracing neural network design features to overall specification

requirements at the system level.

Critical issues of particular relevance to the V&V of neural networks
include:

• Focusing in areas where significant data are available for training,
• Addressing difficulties with scaling systems from prototypes to full

deployment, and
Evaluating the system using real data. •

The neural network system development lifecycle is very similar to that
for decision systems involving statistical modules. Neural network system
lifecycle stages also have parallels with the corresponding stages in the
design of knowledge-based systems and to any inference system with

110 Chapter 6

substantial nonlinear components, whether using symbolic or distributed
knowledge representations. However, the technical aspects of verification of
neural network systems at the systems, integration, and unit levels have not
been generally established.

This chapter examines the considerations and issues listed above in an
attempt to provide the V&V practitioner a comprehensive view of how the
generic verification process can be particularized to the verification of neural
network-based systems.

1.1 Setting the Stage: Framing the Issues

The following quote from "Industrial Use of Safety-Related Artificial
Neural Networks" [Lisboa 2001] identifies the need for the integration of
additional neural network-specific methods with the more traditional linear
design and verification methods that already are well understood.

It is clear from the applications reviewed that the key to successful
transfer of neural networks to the marketplace is successful integration
with routine practice, rather than optimization for the idealized
environments where much of the current development effort takes place.
This requires the ability to evaluate their empirically derived response
using structured domain knowledge, as well as performance testing. In
controller design, the scalability of solutions to production models, and
the need to maintain safe and efficient operation under plant wear, have
led to the integration of linear design methods with neural network
architectures. [Lisboa 2001]

In particular, Dr. Lisboa then identifies the need for additional research in
two directions. The first is to systematize current best practice in the design
of a wide range of quite different neural computing systems, some for static
pattern recognition, others for control, some in software and others
embedded in hardware. The second is to formulate a unified perspective of
each stage in the development lifecycle of high-complexity computation in
safety-related applications, spanning the full range from empirical to
structural process models. [Lisboa 2001]

He then offers a warning to the V&V practitioner regarding where most
additional effort will be required. "In emerging computation, the complexity
is often not in the software implementation, but in the interpretation and
testing required to evaluate the operation of the model."

Neural Network Verification 111

1.2 Expanding the Generic Software Lifecycle for
Neural Networks

A generic lifecycle for computer systems incorporating neural network
system components may be expressed in any of the standard ways. One
such representation based on that used by the U.S. Food and Drug
Administration in their software guidance for reviewers and industry [FDA
1998] is shown in Fig. 6-1.

Requirements Systems
1. Analysis & Z.^^V®"" Level

Specification ^^^'"^*'°"

Functional Intearation Integration
2. Specification & 6. '"^^S/.^^^ Level

Data Requirements '®^̂ '"̂

o .« ^ , PN • c Validation of Model
3.Model Design 5. p̂ ^̂ .̂ ,,̂ ^̂ unit

Level

4 Implementation
& Training

Figure 6-1. Generic Software Lifecycle Model

In tracing through the blocks in Fig. 6-1, Dr. Lisboa expressed the
following observations and caveats of which both the designer and the V&V
practitioner of neural network systems should be aware:

1. Expressing system requirements involves specifying against unwanted
behavior in responses to unforeseen sequences of events. This point
indicates the need not only to verify how the system performs under
expected conditions, but also how the system reacts to unforeseen events.
The handling of such events must be addressed not only for operational
mode but also in regards to the training that the neural network receives.

2. Knowledge representation impacts generalization ability, i.e. correct
operation for future situations. In particular, human expertise is not
always consistent and complete and can be difficult to capture into an
algorithmic representation. This point calls attention to the importance
of the underlying knowledge representation in the ability of a system to
generalize its applicability beyond a rigid constrained subset of a
problem domain. The representational power of a neural network

112 Chapter 6

depends not only upon the neural network architecture and topology, but
also on other considerations such as choice of transfer function, learning
rule, selection of training epochs, and mode of supervision.

3. There appears to be a convergence of knowledge-based, neural
computing, and statistical modeling approaches. This point describes a
convergence of system development methodologies that will necessarily
require corresponding convergence of V&V practices. In particular, the
methods of one approach can be used to provide an external consistency
check for the use of those methods of the other approaches.

4. Assessing convergence in a neural network-based system is equivalent to
achieving consistency. This point notes that the convergence of an
online-learning neural network (OLNN) to ever improving outputs as it
continues to learn is equivalent to the statistical concept of consistency
for nonparametric estimators.

5. The need for independent assessment by agents external to the original
design process should be emphasized. This point currently is being
addressed through such concepts as novelty detection [Marsland 2003].
This is partly due to the need to ascertain and automatically signal if the
inference is extrapolating outside, rather than interpolating within, the
neural network's knowledge base. The V&V of the neural network is not
complete without also addressing the appropriateness of these external
agents.

6. Transparency of inferences is difficult for any complex system, and
particularly so when knowledge is distributed. This point has become
critical as neural network systems become increasingly large and
complex. The traceability of their operation by direct inspection of the
weights and hidden node activations in response to specific test patterns
may not be sufficient to enable verification against established domain
expertise. Methods such as rule extraction and decision tree extraction
are examples of efforts to better infer and describe what the neural
network "knows" [Darbari 2000, van der Zwaag 2002].

7. Any system may in principle be consistent and complete by design, yet
contain knowledge that is incorrect. This point leads to the following
observation: V&V requires adherence to formal methodologies at each
level of the design lifecycle. However, where non-linear inferences from
real-world data are involved, the emphasis appears to be shifting towards
extensive trials with external data.

Neural Network Verification 113

1.3 Verification Considerations for Neural Networks

The major considerations for the verification of a neural network system
thus revolve around its realization: "Was it implemented as intended?" and
its functionality: "Does it perform as expected?" More formally, these
concepts may be defined thus:

• Realization is concerned with existence: what the neural network system
is, what its components are, and how the network is put together.

• Functionality is concerned with purpose and action: what the neural
network system does, how well it does what it does, and how its activity
relates to the problem it is supposed to address.

The two areas, realization and functionality, approach the verification
process from different perspectives.

Verification of the realization of the neural network based system is
focused on assuring that the system has the appropriate resources,
organization, data flow, etc. to perform the tasks or to satisfy the purpose for
which it is developed. Realization verification is more static and precise: it
performs an assessment of what the system, when properly implemented,
could and should be capable of performing. Realization verification
confirms that the system is "a completed operable body awaiting life to be
breathed into it," that it is able and ready to begin functioning as intended.

Verification of the functionality of the system is focused on assuring that
the system executes as planned and that the execution accomplishes what is
expected of it within the bounds and constraints set for it. Functionality
verification is more dynamic and qualitative: it performs an assessment of
what level or degree of functionality is ultimately demonstrated regarding
the system.

The various perspectives overlap, at least in the supporting tools and
techniques they may employ. However, the questions that are raised, and
the results and conclusions being sought are different. The functional or
integration testing of the system involves evaluation of the total system
package - including the neural network architecture, neural network
parameters (e.g., number of nodes, transfer function), the learning algorithm,
and the actual training epochs. Before the system components are brought
together for such verification, each individual component should be verified
independent of the others.

In addition to and dependent upon the above core dimensions of neural
network verification are two other potentially critical aspects of neural
network verification. They are:

114 Chapter 6

• Adaptation, which is concerned with what modifications to a system's
structure and behavior are permitted over time, and how well they are
implemented, and

• Fault management, which is concerned with protecting a system from
potential failures, whether due to its environment or to itself

The requirements for which an adaptive system is designed necessarily
include statements regarding what the nature of the adaptation is to be. Two
examples of adaptation types are supervised vs. unsupervised or explicitly
bounded and focused vs. open-ended where the adaptation is limited only by
the capabilities and resources of the underlying computing platform. The
adaptation can involve changes in the system's architecture and thus
realization, as well as changes in its behavior, or functionality. That the
developed system indeed satisfies the described adaptation strategy must be
verified. Each of these adaptation choices will affect the approaches taken
to verify the system.

Complex systems may be safety critical, where human safety is at risk, or
mission critical, where system failure could impact the total mission the
system is supporting. The purpose of fault management is to enable a
complex system to continue to perform through faulty situations less than
optimally, intended, or desired, and yet well enough to accomplish
significant aspects of the original task (mission preserving) and without loss
of life (risk aversion). Evaluation of how well a system achieves this goal
must be part of the total verification process.

1,4 Organization of the Chapter

The rest of this chapter addresses Dr. Lisboa's seven points in section 1.2
with further discussion based upon the four verification considerations from
section 1.3 (realization, functionality, adaptive systems, and fault-
management). Section 2.1 Realization Verification, addresses points 2, 6,
and 7. Section 2.2 Functionality Verification, discusses points 6 and 7 with
further detail. Section 2.3 Adaptive Systems Verification discusses points 3
and 4. Section 2.4 Fault Management-Based Verification addresses points 1
and 5.

2. NEURAL NETWORK VERIFICATION

Neural network-based systems have truly become mainstream with their
employment in safety- and mission-critical applications. They are being
used in cutting edge research conducted by NASA and the U.S. Department

Neural Network Verification 115

of Defense as well as finding uses within commercial technologies including
medical and automotive devices. This section will discuss the verification
techniques needed to provide software assurance for these highly critical
adaptive systems.

2.1 Realization Verification

Realization verification is essentially a white-box testing activity. The
system components must be produced to specification. They must fit
together properly, which can involve many aspects. In the case of digital
information processing, for example, communications interfaces and
protocols must be properly implemented among the individual internal
components, as well as externally with the environment of the system. The
components must share the available resources that can consist of time
allocation, memory, processing elements, and external interfaces.

In the case of a neural network system, the major components required
for the realization are:

• Structure, which is its architecture, or topology, and parameterization,
and

• Knowledge, which is captured (encapsulated) within that structure.

The neural network structure will typically be realized as some
combination of neural network architecture and neural network
parameterization. Some of the more common neural network architectures
include the multi-layer perceptron (MLP), self-organizing map (SOM), and
radial basis function (RBF). The parameterization can control the specifics
of the architecture or the architecture functionality. Example
parameterizations would be the number of layers, number of nodes, or
choice of transfer functions.

The knowledge of a neural network is encapsulated implicitly within the
neural network by the connections between nodes, the weights stored with
the node, and the transfer functions applied to the various links between
connected nodes. Knowledge must be ingested into the system and
demonstrated empirically through the use of appropriate training and testing
examples.

These two major components of a neural network based system, its
architecture and its knowledge, need to be evaluated from the following
perspectives:

• Independently, or component-wise, as to how well each accomplishes its
intended purpose, and

116 Chapter 6

• Systemically, or collectively, in terms of their fit, or appropriateness, to
each other, so that the sum of the parts indeed equals the whole.

These two components, architecture and knowledge, need to be verified
independently and systemically as if they represented interoperable
components of a final product. In particular for neural network systems,
there is a need to verify the appropriateness of the neural network structure
(architecture and architecture parameters) against the type of knowledge to
be encoded and training to be performed. Such verification involves an
analysis of the potential of success for encoding and for utilizing the
knowledge with the given neural network architecture.

In Chapter 4, the discussion of validation addresses the appropriateness
of various neural network architectures, learning rules, etc. to adequately
encapsulate or represent the necessary knowledge, and to respond with
appropriate outputs to given sets of inputs. A set of guidelines and
suggested mappings of various problem domain classes to generally
appropriate neural network architectures is provided. The reader may wish
to review that chapter at this point.

The purpose of verification at this same systems level is to confirm the
accuracy of such determinations made regarding the specific system as part
of its validation. Specific to neural network systems, each of the following
major verification tasks are considered:

• Verify the neural network structure as an independent system component.
The verification of the neural network structure includes correct use of
hardware, implementation of software, and selection of system
parameters.

• Verify the knowledge sources to be encoded. The knowledge sources
should be analyzed for completeness, consistency, quality, and accuracy.
External checks and balances that are supposed to assure the required
levels are achieved should be verified. In the case of online learning
systems, the consistency of the knowledge and the maintenance of these
checks and balances over time also must be addressed.

• Verify the appropriateness of the pairing of the neural network structure
with the knowledge to be encoded. How well the identified knowledge
characteristics, its strengths and limitations, complement those of the
neural network architecture must be addressed. The appropriateness can
be ascertained to a great extent prior to and independent of the actual
encoding (training) of the given neural network architecture with the

Neural Network Verification 117

targeted knowledge that constitutes the functional verification of the total
system.

2.1.1 Independent Verification of the Neural Network System
Structure

Verification of the neural network structure independent of the particular
knowledge to be encoded can be decomposed further, based on encoded
knowledge-base considerations:

1. Some aspects to be evaluated, such as the correctness of the software
code and hardware that implements the neural network architecture, are
independent of the knowledge being encoded.

2. Some aspects can be considered independent of the actual knowledge
that is encoded, but do depend on characteristics of the knowledge.

General verification tools and techniques can be utilized for those aspects
of the neural network structure verification that are independent of the
knowledge that will be encoded within the neural network system. A
plethora of formal static analysis tools may be employed to verify the
correctness of the program that implements the neural network system, e.g.,
from logic, data-flow, and resource management perspectives, such as
memory, bandwidth, and timing constraints. Such tools are able to verify
the data structures that implement the neural network layers, nodes, and
links, as well as the functional expressions that implement the transfer
functions. However, such tools are not able to determine algorithmetically
whether the knowledge encoded due to a given training epoch will produce
the desired outputs.

Neural networks, at least in theory, represent a parallel computing model,
and various efforts have been proposed to capitalize on this parallel nature of
neural networks. Methods can include the use of both generic non-neural
network-specific and neural network-specific parallel-based hardware
[Saratchandran 1998], as well as custom parallel hardware, including
programmable hardware approaches.

One example is the potential to use readily available commodity priced
graphics chips as vector processors to implement some of the vector oriented
neural network architectures, such as support vector machines (SVM) and
SOMs. Such hardware processors are optimized for vector processing and
for data streaming [Dally 2003], both characteristics of SVMs and SOMs.
Another example of such promising technology is the use of field-
programmable gate arrays that enable the use of adaptive hardware as

118 Chapter 6

opposed to adaptive software to implement neural network systems [Nichols
2003].

Such newly emerging approaches to the development and
implementation of neural network-based systems will require the application
of new V&V methods, at least new to the field of neural networks to support
those approaches. Fortunately, the field of hardware design already has in
place well-developed V&V processes. These range from the use of
sophisticated modeling and simulation design tools to the incorporation of
built-in test [Richards 1989] and built-in self-test [Mohamed 2000]
technologies for real-time error detection and recovery.

From a practical viewpoint, most neural network systems are
implemented on von Neumann hardware designed around a serialized
computational model [Backus 1978]. The processor found in most PCs and
Macs are von Neumann hardware. Serialization of the neural network
parallel computing model is based on multiple considerations that involve
resource and performance trade-offs. One implementation may be more
memory intensive while another may be more processor intensive. Various
data structures may be employed in an effort to accelerate some functions.

Appraisal of these trade-offs and optimizations is part of the verification
process. Some implementation choices may be explicitly mandated in the
system requirements, while others are discretionary, allowing the design
engineer to chose how to do things. General verification concerns include
how appropriate they are to accomplish the intended purpose, and whether
they are correctly implemented.

Numerical computations such as the calculation of values propagated
through the network are constrained by the representational capabilities of
the underlying hardware, as well as by software program effects such as the
ordering and scaling of the computations. Standard numerical techniques
such as data scaling and computation reordering can improve the accuracy
and stability of the computed results.

The analysis of such numerical processing is the realm of numerical
analysis. Methods of numerical analysis such as approximation theory may
be applied to evaluate the accuracy and precision, as well as the operational
efficiency like operations count or memory required. Evaluations can be
taken from multiple perspectives including best case, worst case, and
average. Which perspective is deemed more relevant depends on various
factors. Real-time and safety critical systems may emphasize a worst-case
scenario; whereas, a non-real time but heavily employed system may
emphasize an average case scenario.

Other aspects of computational appropriateness to be considered include
computational resource requirements such as processor speed, memory,
computational operation counts and I/O bandwidth. Scalability and order of

Neural Network Verification 119

magnitude considerations also should be considered. Later, during the
system's functional verification (see Section 2.2), the estimates of required
resources can be confirmed for the actual implementation of the system.

Such aspects of software and systems verification are not specific to
neural network systems and will therefore not be refined further in this
assessment of neural network verification. Instead, the remainder of this
discussion will focus on neural network-specific considerations.

Numerical analysis methods such as an algorithm analysis may be
applied to evaluate the efficiency of the system implementation for a
specifically targeted execution environment. For example, such an analysis
can be particularly important in the case of embedded systems with limited
resources, and in the case of real-time systems where the time required for
neural network, processing can be critical.

This analysis ranges from considerations regarding the most appropriate
neural network architecture, to the choice of transfer function, to the data
structures, and to the characteristics of the hardware used to implement the
system. What otherwise might be deemed a reasonable design for general-
purpose systems and applications may prove sub-optimal or even impossible
to achieve with the targeted execution environment.

Another consideration occurs when the development and target platforms
are different and each requires special treatment. Toolsets such as
MathWork's Neural Network Toolbox [MathWorks 2004] may provide a
reasonable choice of platform for iterative prototyping and experimentation
as a neural network architecture is crafted, transfer functions selected or
defined, and preliminary knowledge is captured in the network through trial-
and-error training.

However, the final deployed system may require porting to a targeted
embedded platform with quite different capabilides, or specific limitadons.
The inherent accuracy and precision of the targeted platform may be quite
different from that of the development platform. Complex mathematical
functions may require software versions, in lieu of hardware acceleration.
The conversion or porting process by autocode or cross compilation is
subject to verification.

In addition to the theoretical, mathematical, and formal aspects of
numerical analysis or algorithm analysis of a neural network implementation
is the need to consider empirical results. Ultimately, the neural network
system will be trained with empirically collected data. That empirical
process itself needs to be verified, both in terms of the methodology by
which it is accomplished and in terms of what quality of results can be
expected. This can constitute a significant simulation effort in which
artificial training epochs are employed that have been specifically designed
to empirically test various characteristics of the neural network system. This

120 Chapter 6

stage in the verification process may make significant use of specialized test
generation tools (see Chapter 9).

This empirical verification is driven from two perspectives:

1. Empirical verification of the neural network system's designed and
predicted capabilities and performance, independent of what knowledge
may eventually be encoded through neural network training with actual
real-world data.

2. Empirical verification of the neural network's appropriateness to be
encoded with knowledge having the expected characteristics of the
training epochs.

This first perspective of empirical verification leads to an understanding
of the capabilities of the neural network structure and implementation that is
independent of a particular problem to be solved. The results of this stage of
verification are of strategic value, since they may be reapplied in the
appropriateness assessment of this system for any given problem, not just the
particular one in hand.

Training epochs may be specifically designed to test the representational
properties of the implementation like convergence, stability, or
generalization. Each such training epoch constitutes a class of problems
with specific characteristics. These epochs are distinct from those to be
drawn later from live datasets for capturing the actual knowledge that
ultimately is to reside in the deployed system. This type of training epoch is
specifically designed to constrain and focus upon exactly what aspects or
features of the neural network system architecture are being evaluated.

Special performance evaluation epochs, for example, may be employed
to verify the neural network architecture's stability qualities. An example of
a quality that could be considered is to construct a given test epoch
purposely ill-conditioned from a numerical analysis perspective. This could
allow determination of how much flexibility or brittleness the neural
network system exhibits with respect to the data on which the neural
network system will be trained and deployed.

The employment of carefully constructed training epochs thus
empirically evaluates the performance of candidate neural network
architectures, transfer functions, and other neural network parameters that
may be compared against various criteria. Performance capabilities
previously predicted are thus investigated systematically in a controlled
laboratory setting. The results of this stage of the verification process are
reusable since they do not presuppose a particular problem domain.

The second perspective takes the empirical verification process another
step closer to the specific application problem, the one that the neural

Neural Network Verification 121

network system ultimately is expected to address. With the general
capabilities of the neural network system established, this second step
commences the meshing of the neural network system with the particular
knowledge it is to encode and the problem it is intended to solve.

Again, the neural network system is trained using specifically designed
training epochs, rather than actual real life training data. This time,
however, the epochs are designed not to explore capabilities and limitations
of the neural network architecture, but to explore those characteristics that
are particular to the actual knowledge to be encoded and the ultimate
problem to be solved [Cukic 2002].

This second phase of the empirical verification process could be viewed
as a series of targeted trial runs. Before this phase can be accomplished, an
analysis of the knowledge to be encoded that is independent of any particular
neural network system is required. The discussion of this independent
analysis process and the characterization of the knowledge to be encoded
within the neural network system is presented in Section 2.1.2. The results
of that analysis effort are employed in the generation of the previously
described testing epochs, and in the analysis of their results.

With completion of this second phase, the neural network system
verification independent of the actual knowledge with which it is to be
trained is considered completed. What then remains is the functional
evaluation and verification of the system using the actual training epochs
that complete the actual neural network system's development.

2.1.2 Independent Verification of the Neural Network System
Knowledge Source

Hand in hand with an independent analysis and verification of the total
neural network structure, including the specification of all its parameters, is
the need for a corresponding independent analysis and verification of the
knowledge that is to be encoded within the neural network. Two major areas
of analysis are identified:

1. Knowledge analysis, which considers the inherent nature of the
knowledge to be employed in the system.

2. Application analysis, which considers how that knowledge is to be
applied within the given system.

Knowledge analysis covers both the knowledge that is used to train the
neural network system as well as that which describes the problem to which
the neural network system is directed. In contrast, application analysis
positions the knowledge particular to the neural network system with respect

122 Chapter 6

to the total knowledge and processing required by the total system of which
the neural network system may be one component.

Simply stated, the first point addresses the question: "What knowledge is
available?" The second point addresses the question: "How will this
knowledge be employed in the particular problem domain?"

Analysis of the knowledge to be encoded in a neural network system
includes considering the following:

1. Completeness of the available knowledge
2. Significance of missing knowledge or gaps, e.g., cases not adequately

covered
3. Representative coverage of the total problem space by the available

knowledge
4. Organization or partitioning of the knowledge, whether natural (obvious)

or identified via data mining methods
5. Knowledge characteristics, e.g., static, dynamic, evolving, adaptive, and

conditional

This information is critical to the application analysis which considers
what types of inferences are expected based upon or at least supported by
this knowledge.

With symbolic or logic-based systems (e.g., expert systems) the
knowledge typically is expressible as symbolic rules, logic clauses, etc. In
the case of traditional procedural or process-oriented systems, the knowledge
is usually in the form of scientifically, formally derived algorithms,
equations, and procedures that typically are expressible in some high-level
procedural or object-oriented modeling language. In both cases, the
knowledge readily is reviewed and critiqued by human experts.

Methods such as rule extraction, discussed in Chapter 8, represent efforts
to deconstruct the knowledge that is encapsulated in a trained neural
network. Those same methods can be applied in the analysis of proposed
training data, independent of any particular neural network implementation
[Darbari 2000, van der Zwaag 2002].

In the case of neural network systems, by contrast, the knowledge is not
so clearly or explicitly described, nor so easily compartmentalized, as is the
case with an identifiable rule or equation to represent some specific theory,
knowledge, or fact. Rather, the knowledge is implicitly expressed within
what otherwise could be considered a body of raw data, which either
previously has been or is yet to be collected from the problem domain. This
body of implicit and empirical knowledge could be considered the ultimate
use-case, as it is a collection of selected examples drawn from the problem
domain for which the neural network system is developed.

Neural Network Verification 123

Before such a body of implicit knowledge is encoded in a neural
network, the system evaluator needs to formulate a sufficient understanding
of what that knowledge consists. Considerations to be addressed include:

1. What is known or can be determined, directly or by inference, about that
knowledge embedded in the data,

2. How the manner, process, and circumstance by which the data is
collected affects its potential use,

3. Whether this information can be expressed and collected by multiple,
perhaps independent, means, and

4. Reasons for preferring one expression or approach over the others.

Independent verification of the epoch knowledge that is contained within
the neural network should be traceable back to the epochs that constitute the
neural network's training. Such verification involves a closer examination
by means other than the neural network encoding of the data that constitutes
that epoch, independent of the neural network structure.

The report by Dr. Lisboa [2001] discussing verification requirements for
safety critical systems emphasized the importance of independent
assessment by agents external to the original design process. This
independent assessment should cover all aspects of the neural network
solution, both its structure and the knowledge that it encodes.

Various analysis methods and tools are available to support such an
analysis. The data can be tested for how well it fits hypothesized principles,
particularly those under which the neural network system is designed. For
example, such analysis can determine what type of decision curves or
surfaces best fit, bind, and partition the empirical data into meaningful
subclasses. On the other hand, the data may be described in terms of its
statistical and clustering properties. Analysis of how the data varies with
time can be very important.

The tools of numerical analysis [Pai 2000], multivariate statistical
analysis [Anderson 2003], and data mining [Hand 2001] can be employed to
perform such an analysis of the data constituting the knowledge source to
confirm system design hypotheses as well as to identify unanticipated issues,
like conflicts with those hypotheses. In particular, some data mining
methods incorporate neural network techniques as part of their data analysis.

Machine learning [Mitchell 1997] may appear at first to constitute an
attempt at circuitous reasoning, using one neural network to analyze data to
be used in another neural network. The major difference between the two
applications of neural network technology lies in how they are used. In this
case the emphasis is on characterizing and understanding the available

124 Chapter 6

knowledge, whereas in the original case (the one being verified) the
emphasis is on applying the knowledge to solve a particular problem.

This machine learning exercise could be considered an automated or
computer-assisted brainstorming session to explore and to determine just
what information or knowledge is contained in the proposed data that will be
used to train the neural network system that is to be deployed. The results of
this effort at knowledge analysis are apropos not only to the particular
application of this knowledge that is the current focus, i.e., the current
problem to be solved, but more generally whether the knowledge might be
appropriate to any other problem that may even tangentially involve this
knowledge.

In addition to providing a detailed characterization of the knowledge
implicit in the training data, this analysis also facilitates a better
determination of engineering concerns, such as how much data is needed to
properly capture within the neural network system the knowledge or
mechanisms that supposedly are exhibited in the data to the levels or degrees
of accuracy, precision, coverage, or generalization specified in the system
design requirements.

The results of this knowledge analysis can also benefit the actual
operation of the neural network system by providing a foundation for
evaluation of the operational epochs that are passed through the deployed
neural network system. This knowledge can be employed proactively in the
development of real-time monitors that evaluate when the inputs to the
operational neural network system should be questioned.

Complementary to knowledge analysis is the consideration of the
suitability of the knowledge implicitly expressed in the proposed training
epochs in accomplishing the purpose of the total system. The task of
application analysis utilizes the insight gleaned by the knowledge analysis
task regarding the nature of the knowledge source (KS) to explicitly and
purposefully relate that KS to the problem that it is supposed to address.

The goal of application analysis is to ascertain how well the proposed KS
addresses the problem being solved. Identified deficiencies may indicate the
need to expand or otherwise modify the knowledge collection, to incorporate
other external knowledge, or to modify neural network system architecture
and parameters.

Major issues and concerns to be addressed by the application analysis
task include, for example, the following considerations:

1. Extent to which the KS covers all possibilities (scenarios),
2. Uniqueness and relevance of the KS to the particular problem,
3. Alternative or additional KS that are more relevant,
4. Generalization, levels and what types, required of the KS,

Neural Network Verification 125

5. Ambiguity of multiple, equally plausible and acceptable generalizations,
6. Accuracy and precision expected from the KS,
7. Safety-critical requirements on the KS,
8. Mission-critical requirements on the KS,
9. Fault management requirements on the KS,
10. Confidence levels to which results are judged, and
11. External mechanisms or KSs available by which to judge and confirm

generalizations.

The functional verification activities discussed in Section 2.2 will
consider whether the final implemented neural network system does indeed
generalize as expected. However, before that determination is addressed, the
more immediate concern is to what extent the underlying knowledge itself,
independent of any particular neural network architecture, can be expected
to satisfy the application requirements. Otherwise, the determination of
what knowledge to use or whether the problem should be solved with a
neural network system remains in question.

In addition to the identification of the major issues to be addressed,
another major aspect of this task is to identify the criteria by which to judge
the findings of the analysis.

The use of neural network-based systems in medical diagnosis provides
an example of such systems design and V&V considerations [Lisboa 2002].
Neural network-based medical diagnostic systems are safety-critical, and so
their predictions must be externally confirmable by a medical exam or other
independent medical procedures. The determination of which instances of
the system's usage should be second opinioned can depend on many factors.
A medical system must attain a series of certification levels on its way to full
certification, moving from limited trial to broad based trial, and finally to
full deployment.

The source of the knowledge should be carefully considered. The
eventual target environment of the neural network system can be quite
complex. Proper training of the neural network system can be greatly
affected by the quality of the data that constitutes its training epochs. The
collection of production data will certainly be required for the training as
well as for the final functionality verification and acceptance testing of the
neural network system. Production data will likely characterize the type of
data typically available to the deployed neural network system. However,
the neural network development and verification in some cases may
necessitate the use of additional designed data.

Designed data [Coit 1998] is not simulated or fabricated data. Rather,
designed data is indeed actual observable, collectible data. However, it is
collected under carefully controlled and specified conditions. When a data

126 Chapter 6

collection experiment is designed and performed, the data collected is much
more tightly controlled. Exact levels of the input variables are stated.
Experiments can be blocked to avoid confusion caused by questionable
examples. Experiments may be replicated. The designer can control the
sampling distribution.

Such planned experimental data often is collected with more care and
attention than that normally given to production data. The setting is more
controlled, so that the observations that are collected can be properly
attributed to the correct circumstances and causes. For example, only a
single operator, machine or ambient condition may participate. Additional
special tests or measurements may be made that would be impractical during
normal production.

Data analyzed during the course of the experiments may lead to the
modification of the experimental design or the data collection procedures, as
needed. Multiple iterations may be required to satisfy the data collector as to
the usefiilness and completeness of the data that is collected.

More information may be collected as part of the designed data collection
than will be available for use by the neural network system when employed
in normal production mode. Such additional sources of information are not
to be used to train the neural network system, since they would not normally
be available as inputs to the neural network system. However, such
information may be available under special circumstances as in when the
system is operated in a diagnostic mode observed by an external monitoring
system. Thus, what otherwise might be considered extraneous data may yet
have a valid purpose in one or more of the diagnostic operational modes of
the system. It also may be useful in the determination or verification of
overall system performance.

Other reasons for the collection of designed data include the need to
capture atypical situations like failure modes that do not occur with
sufficient frequency when the system environment is employed in typical
production mode. If the neural network system is expected to detect the
presence of faulty products in some production process or some anomalous
situation, a sufficient number of such events may not occur frequently
enough under normal operations to provide an adequate training set.

Dr. Alice Smith discusses the issues related to the need for and the use of
both designed data and production data in the development of appropriate
complete training and testing epochs [Coit 1995]. Such issues include the
proper balancing of examples from both sources. Normal production data is
more readily available than specifically collected designed data.

The need for a readily available external source of confirmation can be a
vital concern in real-time safety-critical systems such as neural network-
based aircraft flight controllers. For example, medical standards related to

Neural Network Verification 127

the deployment of new systems require the ready availability of independent
means to confirm the results of the new system. Such external sources must
be independent and not simply the result of partitioning available training
epochs to support a cross-validation strategy.

For the case of systems that require such ready access, one alternative
may be for novelty detection to be permanently built into the total system.
In a sense, the novelty detector may be viewed as part of a real-time self-
imposed V&V of the neural network system's performance (see Section 2.2).

The willingness of various industries to adopt and to trust neural
network-based systems is following a predictable story-line similar to that of
the development and deployment of fly-by-wire technology.

Fly-by-wire is a means of aircraft control that uses electronic circuits to
send inputs from the pilot to the motors that move the various flight
controls on the aircraft. There are no direct hydraulic or mechanical
linkages between the pilot and the flight controls. Digital fly-by-wire
uses an electronic flight control system coupled with a digital computer
to replace conventional mechanical flight controls.^

For a number of years, new fly-by-wire control systems were deployed
with then traditional hydraulic systems as backup. Over time, the fly-by-
wire system technology was in fact proven by accumulated experience to be
more adaptive as well as more reliable (less prone to failure and less
expensive to maintain) than the hydraulics that was replaced. Historically,
the National Aeronautics and Space Administration (NASA) used an F-8C
for its Digital Fly-by-Wire Program. This was the first digital fly-by-wire
aircraft to operate without a mechanical backup system.

2.1.3 Appropriateness Verification of Neural Network Structure and
Knowledge

Sections 2.1.1 and 2.1.2 discussed the roles of independent examinations
of the neural network structure and of the knowledge that has been or will be
encoded. The information gleaned during these independent examinations
serves a crucial role in the evaluation of how well the two system
components can be expected to mesh to form a total neural network-based
system.

This section considers issues that should be addressed before the actual
neural network training is performed and functionally evaluated. Emphasis
is on how well the strengths and limitations of the chosen neural network

^ Fly-by-wire, http://www.1903to20Q3.gov/essav/Dictionarv/flv-bv-wire/DI83.htm

128 Chapter 6

architecture complement the knowledge available for training the neural
network and external constraints on the problem to be solved.

The appropriateness of matching the chosen neural network structure
with the available knowledge should be considered at several levels. These
aspects range from the high-level validation question of whether the choice
of neural network architecture is appropriate to the problem being addressed,
to how the neural network parameters should be set to best encode the
training dataset, to planning how to verify the encoding of the domain KS
that represents the problem domain knowledge.

Whether selected from a standard configuration, as from a development
package such as MATLAB Neural Network Toolbox, or custom designed,
the particular neural network architecture and its configuration parameters
are determined based on a set of assumptions about the knowledge to be
encoded and the data available for training and evaluating the final system.

To focus discussion of the appropriateness of the neural network
structure, of the knowledge it is to encode, and of the problem to be solved
or application to be performed, this section considers the two general
statistical estimators of performance, bias and variance. In particular, this
section analyzes the interplay of these two as typified in what has been
termed the bias-variance dilemma, Geman, Bienenstock, and Doursat
[1992] in "Neural Networks and the BiasA/^ariance Dilemma" provide a
comprehensive discussion of this neural network design problem. The two
statistical factors, in neural network terminology, may be defined thus:

1. Statistical bias is the complexity restriction that the neural network
architecture imposes on the degree to which the target function is
accurately fit.

2. Statistical variance is the deviation of the neural network learning
efficacy from one data sample to another sample that could be described
by the same target function model.

Statistical bias accounts only for the degree of fitting of the given
training data, but not for the level of generalization. On the other hand,
statistical variance accounts for the generalization of whether or not the
neural network fits the examples without regard to the specificities of the
provided data. While the two statistical measurements are interrelated,
improvement of one of these measurements does not necessarily guarantee
improvement in the other.

The performance of the trained network can depend on many factors,
including the learning algorithm, number of layers, number of neurons,
connections, overall network topology, and the transfer functions computed
by each neuron. To avoid over- and under-fitting of the data, the bias-

Neural Network Verification 129

variance trade-off should be balanced by matching the complexity of the
network to the complexity of the data [Twomey 1998].

Fig. 6-2 depicts an idealization of the prediction risk, represented as the
expected training error and expected test error, versus model size for models
trained on a fixed finite training sample [Moody 1994]. The figure separates
into two regions: under-fitting which is due to high model bias and over-
fitting which is due to high model variance. The selection of the best model
corresponds to an optimal tradeoff between the global low training error and
the global low test error.

LLI

. Too much bias
(Under-fittinq will occur)

\ ~ ^

J

Too much variance
(Over-fitting will occur)

A .

1

Expected Test
Set Error

Expected Training
•̂ Set Error

'• >

Best Model

Model Size

Figure 6-2. Idealized Depiction of Expected Training Test Error (Prediction Risk) vs. Model
Size

The under-fitting situation of Fig. 6-2 occurs due to a lack of adequate
training. On the other hand, too much training of a neural network system
can result in over-fitting. This corresponds to the situation where the learned
function fits very closely the training data however it does not generalize
very well. Consequently, the neural network cannot model sufficiently well
unseen data from the same task. General criteria for avoidance of over-
fitting the training data and increasing the generalization are given by the
statistical and generalization theories.

130 Chapter 6

A neural network that fits closely to the provided training examples
should have a low bias but could have a high variance. Incorrect neural
network models can result in too high a bias. This is the situation where the
neural network tightly matches the training set, but the training set does not
in fact represent the true problem. On the other hand, truly model-fi*ee
inference where the model is selected without any understanding of the
training set suffers from high variance. Model-free approaches to complex
inference tasks are slow to converge, in the sense that training epochs
required to achieve acceptable performance can be quite large—to the point
of being impracticable to collect. This is the effect of high variance and is a
consequence of the large number of parameters; indeed, an infinite number
in truly model-free inference that need to be estimated.

Simply stated, increasing the number of parameters of a neural network
model can contribute to a large variance, while small numbers of parameters
increase their bias. In the former case, more cases might be generalized,
though less well, while in the latter case the network is more tailored to a
given problem domain and should be expected to perform that task more
efficiently but does not generalize well outside that carefully crafted domain.

Various strategies are available to the developer of a neural network
system for fine-tuning to achieve the desired generalization level [Nikolaev
2003]. Some simple strategies that manipulate the neural network
architecture include the following:

• Reduce both the statistical bias and variance by considering more data
points.

• Reduce the statistical bias by growing of the neural network.
• Reduce the statistical variance by pruning the neural network.

Addidonal efforts to balance the stadstical bias and variance involve
tuning the network learning algorithm, providing training examples, or
shaping the transfer function. Other efforts to balance the statistical bias and
variance in an effort to avoid over-fitting can be made with the following
neural network tuning strategies:

• Regularization
• Early stopping
• Growing neural networks
• Pruning neural networks
• Committees of neural networks

Neural Network Verification 131

The neural network verification process should include an analysis of the
following bias-variance aspects of the neural network system design and
implementation:

• Bias-variance target that is mappable to the available data and the
problem being solved.

• Approaches taken to achieve that target with combination of the above or
other methods employed.

• Justification given bias-variance target and the choice of approaches
used, including technical issues, cost and management issues, safety- or
mission-critical concerns.

An obvious concern of the V&V practitioner is the determination of how
well the neural network system addresses the bias-variance dilemma. Prior
to the actual neural network training, the V&V analysis should leverage the
resources previously discussed in Sections 2.1.1 and 2.1.2 to access how
well the proposed combination of neural network system and training epochs
will evaluate with respect to the general performance estimators of bias and
variance.

During and following the training of the neural network, these general
estimators again should be computed and compared with expected results as
a component of the functional verification discussed in Section 2.2.
Discretion to modify the training epochs or the neural network system via its
available parameters in an effort to achieve better performance results
certainly are options for the system developer and may be an option to the
V&V practitioner, whether directly or via referral to the developer.

Neural networks have been proven capable of functioning as universal
approximators. They can approximate an arbitrary continuous function on a
compact domain with arbitrary precision given a sufficient number of
neurons when they include nonlinear activation functions [White 1990]. The
trained weights of a neural network are a vector-valued statistic, and training
is the process of computing that statistic. The relationship between neural
network models and statistical models has been the subject of several recent
papers by well-known statisticians [Cherkassky 1994] with the general
conclusion that there are many important parallels between the development
of neural network models and the computation of statistical models.

Networks with neurons that produce Gaussian outputs also are examples
of universal approximators. Two popular feed-forward neural networks
models, the MLP and the RBF network, are based on specific architectures
and transfer functions. MLPs use sigmoidal transfer functions, while RBFs
use radial functions, usually Gaussians. Given such choices of transfer

132 Chapter 6

functions, both types of neural networks have been employed as universal
approximators.

The employment of universal approximators as transfer functions does
not always provide an optimal choice. Approximations of complex decision
borders or approximations of multidimensional mappings by neural
networks require flexibility that may be provided only by networks with a
sufficiently large number of parameters. This leads to another method by
which to address the previously discussed bias-variance dilemma.

More recently, a number of new transfer function types, as well as
hybrids of previous types, are being applied in a variety of applications. The
comprehensive 50-page paper, "Survey of Neural Transfer Functions"
written by Duch and Jankowski [1999] provides an examination of general
criteria by which to judge the appropriateness of these and other transfer
function types for various classes of neural network applications. Their
survey reinforces the argument by several neural network experts that the
choice of transfer functions should be considered as important as the
network architecture and the learning algorithm when developing a neural
network solution.

Fig. 6-3 that follows is taken from another Duch and Jankowski [2001]
paper. The transfer function types are hierarchically ordered according to
their flexibility. Each similarly grayed row contains functions that exhibit
similar flexibility. The top rows contain the most flexible function classes,
and the bottom rows are the simplest. Along with the names of function
types are numbers in parentheses to identify the equations in the Duch paper
that describe each type, and mathematical symbols indicate the activation
and output functions employed to form each transfer function type.

For simple problems, the selection of transfer function may not appear to
be a significant system constraint. However, in the case of more
sophisticated applications, the selection of transfer functions may make a
significant difference in eventual performance or ease of training.

At one extreme, when the datasets are small and the dimensionality of the
feature space is relatively large, the actual shape of decision borders
determined by the choice of transfer function may seem irrelevant. Logical
rules or decision trees, dividing the feature space into hyper-boxes, may be
sufficient.

However, as more data samples are provided, the inadequacy of the
generic transfer function models will appear and the need for flexible
contours approximating real distribution of data may become apparent
[Jankowski 2001]. As noted in Section 2.1.3, complexity of the neural
network model may be controlled by Bayesian regularization methods using
ontogenic networks that grow and/or shrink, and judicious choice of the
transfer functions.

Neural Network Verification 13 3

^ ^ ^ ^ Bicentral (2SIU|K>. Rut2Slupe.. .) 0«). .̂ 0. |l2]i (;-C€jnici:Ti Cj-Ridella (28J

^m Act: A2-.U. O; \\{Ai .At ai Acl: / \ l)\ O: <t Act: / t /) ' . 0:c

I Bicentral 125.26) I Conic 1221 Ridella <211 C(,u<-^' Can (23) |

hici:A\,A2, O: n(Ar.^^f^3®?4%, 0:o Ad: /* \ D\ 0:a Ad: / f/). O: j ^ Ad:71 B. (J: TTTT "

Multi\-jriate Gaussian 11.vi MultiMiriate Signiuic) il4i 0:il5i 6 : I 1 M

Act: n\ Or. (i Act /A O: a Act: /J,. 0:11 r r Act: /),. O: i

Gaussian-han |7i SignioidaNbari isi Korentzian i lOj Window i20i

Ad: /A O: v (, Ad: /A O: l a Ad: /. O: y\^ Ad:;, O: G'

GausM în 11 h Radial coordinate Î J MulttquadraticstOi Thin-plato spline i

Ad: a Q G Ad: O. O: A Ad: n, O: {Ir j D ĵ" Act: a O: (ADĵ ki(6Z))

Gaussian Approximations! 121

Ad: A O: G, - 2 - 2ff(/̂ X C2 ~ tmh(i^). C2, 1^^ *pl'<w» «PPK«- II21

l.ogistici5i Other Sigmoids Sigmoids Approximations (\2.\.^)t6 7i

Ad: A O: fl Ad: /, O: unh, vcttn Act /, 0:0(/)7fe - 0(-/)7^. yj^^p^ r ^ -

lleavisido<2i MultistopcT î Semi-linear i4i

Ad: /. O:&{l:(i) Ad: /. 0: ;(/) Ad: /. O:-v.(/:0,.0:)

Figure 6-3. Hierarchy of Neural Network Transfer Function Classes [Duch and Jankowski
2001]

Much of the prior discussion has focused on correctness and
performance, but there are other considerations such as efficiency.
Efficiency involves not only the resources required by the neural network
system when it is functioning in its intended application, but also the steps
that lead to that neural network system's development as well as its V&V.

The optimal system may consume too many resources, computationally,
to be deployed in the targeted environment. The choice of transfer function
may not only improve the correct performance of the system, but also result
in a system that is less complex and requires less training effort to achieve
the desired performance level.

A variety of strategies have been explored for the incremental refinement
of neural network systems so they are both more correct and more efficient
[Ragg 1997a]. Some approaches attempt to modify the neural network
topology [Ragg 1997b]. Other approaches include the employment of
hybrid algorithms integrating genetic algorithm, simulated annealing, and
other heuristic procedures that can be applied for the optimal design of a
neural network architecture and correct parameters for the learning
algorithm that yield a smaller, faster and better generalization performance
[Abraham 2000]. More recently, researchers are considering transfer
function adaptation as a means to improve neural network system
performance and training efficiency [Chandra 2004; Abraham 2001].

Such efforts to iteratively, incrementally, and genetically evolve a neural
network system to achieve better performance and efficiency require
comparing the actual performance of successive versions of a neural network

134 Chapter 6

system. This means that each version is functionally evaluated as to whether
it not only still performs as expected, but also has improved in some
demonstrable sense. Section 2.2 discusses this topic in more detail.

2.1 Functionality Verification

Functionality verification is essentially a black-box testing activity to
determine if, given appropriate input events, the correct output events occur.
Inputs and outputs may encompass not only data feeds into and out of the
system, but also system actions that result or do not result such as a robot's
correct and incorrect actions. The verification of the neural network
system's functionality involves determination of whether the system can be
employed as was intended and for the problem that it was designed.
Basically, the system should "perform as advertised." Its interactions with
its environment should be as specified.

The functional verification of a neural network system may be
particularly challenging. The same methods that are applied to the
functional verification of a completed neural network system are also
employed during the neural network learning/training process.

As Dr. Lisboa [2003] has previously noted regarding the V&V of safety-
critical systems, the V&V process requires adherence to formal
methodologies at each level of the design lifecycle. However, where non­
linear inferences from real world data are involved, the emphasis appears to
be shifting towards the employment of extensive trials with external data.
This leads to a verification process that is performance-based.

Training is an iterative process; the knowledge encoded in the neural
network system is changed with each additional training cycle of a training
epoch.

Functionality verification is concerned not only with what the system is
able to do but with also how well it performs those functions. Additional
considerations include the stability and consistency of its performance over
an expected diversity of operational settings. The predictability and
repeatability of the observed performance is considered. Such
considerations are important when judging adaptive systems.

Previous sections have discussed verification of the components that
comprise the neural network system, namely, the total neural network
structure, consisting of neural network architecture and system parameter
choices, and the training epochs employed, where the knowledge to be
captured implicitly resides. Various approaches and techniques for the
independent evaluation of each of these components have been discussed.
The results of those independent verifications now are brought to bear on the
functional verification of the total neural network system.

Neural Network Verification 135

2.2.1 Simulated vs. Empirical Verification

In particular, Section 2.1.3 considered via an analysis of the ability of the
neural network structure to encode especially crafted artificial knowledge
via training epochs that supposedly exhibits the characteristics of the actual
knowledge with which the neural network system is ultimately to be trained.
This set of dry-runs permitted the carefully controlled analysis of how well
the neural network system might be expected to behave under a variety of
assumptions. Objectives and considerations served by such a preliminary
training exercise include the following:

• The amount and quality of data available with which to test the neural
network system's characteristics, performance, etc. is not limited by
potential difficulties and costs in collecting real data.

• This flexibility in training epochs facilities a comprehensive analysis of
the neural network system's ability to encode the desired knowledge.

• The training process itself can be thoroughly verified.

Some data sets, such as those that would be collected during a test flight
of an aircraft, could be quite expensive. To perform repeat data capture
sessions for multiple scenarios can quickly become cost prohibitive.
Additional considerations that can arise and so must be addressed include
recalibration between test collection runs and proper documentation of all
pertinent constraints.

The simulated data sets may include not only training epochs designed to
represent expected or typical scenarios, but also to mimic abnormal training
epochs. Such epochs may be difficult, quite unsafe, and perhaps impossible
to collect under normal conditions. These conditions could occur under
plausibly realizable circumstances and should therefore be considered in the
final analysis. The nature and quantity of designed data discussed in Section
2.1.2 can be identified, estimated, and confirmed.

A comprehensive analysis of the neural network system should include a
sensitivity analysis to determine whether and under what circumstances the
combination of this neural network system and the expected actual training
data might result in an ill-conditioned system, and so require further
engineering consideration and refinement.

Simulated data, generated from actually collected data, can be
systematically deformed. Deformation would render the simulated data
defective in some sense. This data can be employed to test the stability of
the neural network system from two perspectives:

1. Training with less than optimal (desirable) epoch data

136 Chapter 6

2. Executing with less than optimal (expected) run-time data input.

The first case is part of the stability analysis of the neural network
system's training. The latter case constitutes part of the assessment of the
system's expected run-time performance for scenarios where circumstances
outside the system's control affect data on which the neural network system
depends.

Additional considerations to be addressed include verification of the
neural network training and verification of the process itself, including how
to assure quality control of the actual training epochs, estimation of how
much data should be collected, or what error metrics are more appropriate to
use.

The training methods that are to be employed with the actual training
epochs are presumed to have been employed previously with such artificial
epochs. The process of capturing and training with actual training epochs
should greatly benefit from such prior effort.

Of the two concerns of what vs. how that functional verification
addresses, the easier one is that of how well the system performs. The more
difficult analysis concerns appraisal of the correctness of the system. Given
a neural network system and a set of training epochs, the training can be
performed using a variety of approaches that are adaptable and flexible.

The following section examines the process for verification of the
training of the system. The focus is on the generation of quantifiable
appraisal of the neural network system's performance. The training process
and its evaluation are interrelated. A given training process may perform
poorly or well.

This process is not the counterpart of compiling the source code of a
procedural program to generate executable object code, which either does or
does not compile. A traditional program may have and eliminate compiler
errors, only to reveal run-time errors.

2.2.2 Quantifiable Training Verification

The verification of the training needs to be measurable. Neural network
systems may be viewed as implementing a function approximation task.
Generally accepted standard error measurements include:

• mean absolute error (MAE),
• mean squared error (MSE),
• root mean square error (RMS), and
• percent good classification (PG). [Twomey 1997]

Neural Network Verification 137

There is no consensus as to which measure is preferred.
A neural network system performing pattern classification typically will

use an error metric that measures misclassifications along with, or instead of,
an error metric that measures distance from the correct classification.

Misclassification error is further broken down into two components:

1. Type I errors, also called a . errors or missed occurrences, are
misclassifications where the input pattern, which belongs to one class, is
identified as something other than that class.

2. Type II errors, also called p. errors or false alarms, are misclassifications
where the input pattern belongs to another pattern class, but is identified
by the neural network as belonging that particular class.

The objective of a neural network system is to generalize successfially,
that is, to predict successfully on data not used to train the neural network.
A neural network system's success generally is measured in terms of the
following three statistical error measurements [Efron 1982]:

1. True Error is statistically defined on "an asymptotically large number of
new data points that converge in the limit to the actual population
distribudon." [Weiss 1991]

2. Apparent Error is the error of the neural network when validating on the
same training set used to construct the model.

3. Testing Error is the error of the neural network when validating on a test
set other than the training set.

Since any real application can never determine True Error, it must be
estimated from Apparent Error and / or the Testing Error. This situation is
expressed as

True Error == Apparent Error + Bias (6.1)

Most current neural network practitioners use Testing Error as the
estimate for True Error, the so-called train-and-test validation method;
however, some use Apparent Error, and a few use combinations of both.
Typically the true error of a neural network system is estimated by testing
the trained neural network on new data not used in model construction.

In many cases data may be severely limited; consequently, the true error
is estimated using the same data employed to construct the model. Several
sampling methods that reuse the training set data have been developed.
These have two important aspects:

138 Chapter 6

• They use all data for both model construction and model validation.
• Nonparametric techniques do not depend on functional form or

probabilistic assumptions.

Some of the more prominent methods are briefly discussed below. There
are trade-offs associated with using these methods for both neural network
and statistical prediction models [Twomey 1993]. These methods are
nonparametric or data driven. Benefits of nonparametric methods include
the following:

• They demand minimal amounts of modeling
• They require few assumptions or analysis
• They are mechanistic or easy to apply for universal application
• They substitute computing power for theoretical analysis

The greatest benefit associated with such resampling methods is that they
utilize all available samples in neural network system training. The first two
methods below require the training only on neural network system. These
methods are relatively inexpensive in computational resources, and may be
appropriate for simpler, non-mission critical applications. The latter three
methods generate multiple neural network systems but provide better error
estimates, so they are appropriate for systems associated with higher value
and risk.

Resubstitution substitutes the training data used to construct the model
for estimating model error or training set error. This method is also called
the apparent error method since it estimates True Error as equaling the
Apparent Error, and Bias is treated as being zero. This estimate is thus
biased downward to less than the true error, sometimes severely. This
method does use all of the data both for model construction and for model
validation and is computationally inexpensive because only one model is
constructed.

The test-and-train methodology divides the available data into two sets.
One set is used to train the neural network model, and the other set is used to
validate the model. This is the most common method of neural network
validation. True Error is estimated directly as the testing set error and Bias
could be calculated by subtracting the Apparent Error from the testing set
error.

The proportion set aside for training of the available data has ranged, in
practice, from 25% to 90%. The training set error, and therefore the estimate
of True Error, is highly dependent on the exact sample chosen for training
and the exact sample chosen for testing. These two components are
completely dependent on each other since they are mutually exclusive. This

Neural Network Verification 139

creates a highly variable estimate of True Error, especially for small sample
sizes.

A modified version of this method divides the available data into three
sets:

1. Training set,
2. Stop testing set used during training, and
3. Performance testing set used for validating the trained network.

The stop testing set is used during training to decide when training
should stop. This stop-learning test set is intended to detect and prevent
over-fitting. The second testing set then is used to estimate the True Error of
the trained network. This method may result in a better generalizing final
network, because of its avoidance of over-fitting, but the available data
sample is divided three ways instead of two ways, decreasing the number of
data points used for model construction.

Fig. 6-4 [Twomey 1993] provides an example of over-fitting due to
neural network over-training. In this example, the best results were achieved
with a training epoch of 180 items. Continuing to train with additional
training items results in degraded statistical results.

Fig 6-4 is separated into two columns. The column on the left shows
training with a training data set. The column on the right shows testing via
cross-validation data. In row a), the training results in a poor fit as it is thus
far insufficient. In row b), there is a slightly improved fit due to continued
training. Row c) results in a near-perfect fit and would be an opportune time
to stop training. Finally, row d) demonstrates over-fitting due to continued
training where there is a low error in training and a higher error in testing

In terms of computational costs, for both versions of train-and-test, only
one model is constructed, but both training and testing are performed on a
subset of the available data.

Cross-validation and group cross-validation [Stone 1974] each divide the
available data into k subgroups. A total of k distinct neural network systems
are constructed, each using k-1 data groups for model construction, and the
reserved group for k̂ ^ model validation.

In general, this method removes a sub-sample of data size k from the
entire data set size n. The network is trained on the remaining n-k data
points and tested on the k data points left out. The sub-sample of data then
is returned into the training set. This extract-train-test-return procedure is
repeated until all n points have been removed and n/k networks have been
trained and tested. In the special case of k=l, this method is known simply
as cross-validation.

140 Chapter 6

Training Iterations = 2
Training Error = 0.86
Testing Error = 0.91

Training Iterations = 25
Training Error = 0.35
Testing Error = 0.42

Training Iterations = 50
Training Error = 0.12
Testing Error = 0.05

1

i /

4-1
1
1

'N

+•

' — 1 — h —

A>Q

- { — 1 — f - -\-

Training Iterations = 100
Training Error = 0.03
Tcoiing Error - 0 .65

\ if

\ Av'l
w^ 1 A)

H A V

- \ — \ — 1 — \ — \ — \ —

Figure 6-4. Training: An Example of Over-fitting

The final deployed neural network system then is trained using all the
data. Some practitioners simply select the final network fi-om the n/k
networks that were constructed. Its True Error is estimated by using the
mean of the Testing Errors of the k grouped cross validation neural network
models.

This method uses all available data for both model training and model
validation, but requires the construction of k+1 models, i.e. training k+1
neural networks. Its Bias is estimated by subtracting the Apparent Error of
the application network from the estimate of True Error.

The jackknife methodology [Miller 1974] is identical to the grouped
cross-validation except that the Apparent Error is determined by averaging
the Apparent Error, rather than the Testing Error, of each jackknifed model.
Each jackknifed model is the same as each grouped cross-validated model.

Neural Network Verification 141

described in the preceding section. The Bias is estimated by subtracting this
new Apparent Error from the estimated True Error.

Simply stated, the vaUdation using grouped cross vaHdation and grouped
jackknife will be identically determined and computed, except for the
calculation of Apparent Error. Consequently, the computational costs are
the same as that of group cross-validation.

With the bootstrap methodology, [Efron 1982] an initial data set of size n,
called the bootstrap, is drawn with replacement from the original data set of
n observations. The bias of each bootstrapped network is estimated by
subtracting the Apparent Error of that network from the error of the network
evaluated on the original total data set.

This process is repeated k times, each with a different randomly drawn
data set. The overall estimate of Bias is obtained by averaging over the k
estimates of bias. The final application model is constructed using all of the
data. Therefore k+1 models are constructed. True Error is estimated by
adding the estimate of Bias to the Apparent Error of the application model.

The bootstrap method is generally noted to be less variable than either
the grouped cross validation or the grouped jackknife, but it can be
downwardly biased. According to Efron, originator of the bootstrap, this
method is the maximum likelihood estimate of the True Error. The
bootstrap method constructs the final model using all n data points and
estimates the bias via resampling.

Although the bootstrap methodology has been shown to provide very
good estimates of error for statistical prediction models, there are few
instances in the literature where the bootstrap method of error estimation has
been applied to neural network prediction models. This is most likely due to
the increase in computational effort of building additional models.

2.3 Adaptive Systems Verification

If the neural network system is an OLNN, it is adaptive while used in
operation. This means the verification process becomes significantly more
complicated. The requirements for which the adaptive system was designed
necessarily included statements regarding what the nature of the adaptation
is to be. Example requirements could specify that the network is supervised
or unsupervised or that it is explicitly bounded and focused or open-ended
where the neural network is limited only by the capabilities and resources of
the underlying computing platform.

That the developed system indeed satisfies the described adaptation
strategy must be verified. Each of these adaptation choices will affect the
approaches taken to verify the system. Verification now includes not only
the system's encoded knowledge at a given point in time, the case with a

142 Chapter 6

pre-trained neural network (PTNN), but also the discipline by which the
OLNN is constrained to perform within the bounds set for it. The system
cannot be allowed to "learn its way into a hole."

A significant difference exists between a PTNN and an OLNN in regard
to the roll and objective of verification. With the PTNN, focus is on what
the PTNN knows at the time of deployment; whereas, with the OLNN, the
bounds of what the OLNN might yet learn in the future also is a major
concern.

In particular, with adaptive systems, the verification process does not
reach a definitive point in time. For example, the verification might not be
considered complete at system rollout when system verification can be
treated as a completed static event, since the knowledge encoded within the
neural network is subject to change in response to events in its operational
environment. On the other hand, to address the requirement of post-
deployment verification by repeatedly reapplying the methods of static
system verification is not practical, either.

To adequately address this situation, a middle-ground strategy is needed.
This section examines how such a strategy may be implemented and
verified. The following areas are examined:

• Sources or mechanisms for neural network adaptability
• Functionality required to oversee and assure the neural network

adaptability
• Evaluation procedures and processes

The neural network system adaptability may be achieved in multiple ways:

• Neural network system weights, topology, etc. may be modified.
• Learning rules and constraints may be modified.

New training may be integrated with prior neural network training in a
variety of ways.
New training may be integrated with external knowledge in a variety of
ways.

•

•

Each of these modalities raises particular verification concerns to be
addressed. In particular, these modalities of adaptation may be applied in
multiple ways that may or may not be coordinated with one another.

2.3.1 Adaptive Neural Network Architectures: A Primer

The simplest form of neural network adaptation is the adjustment of
neural network weights during the training process, whether this adaptation

Neural Network Verification 143

is performed as pre-training or online learning. Examples of such neural
network architectures that employ this approach include the widely
employed feed-forward, back-propagation architecture developed in the
early 1970's by several independent sources, including Parker [1987], and
Rumelhart [1986]. Such architectures are generally employed in prediction-
class problems and require supervised learning.

With some neural network systems, not only are the various weights
subject to modification, but so is the neural network structure. The SOM
developed by Teuvo Kohonen in the early 1980's [Kohonen 1998] is such a
neural network architecture. The input data to an SOM is projected to a two-
dimensional layer that preserves order, compacts sparse data, and spreads
out dense data.

Another significant difference between this neural network type and
many others is that training of the SOM involves unsupervised learning.
Hybrid applications involving SOMs also are possible. When the SOM
topology is combined with other neural layers for prediction or
categorization, the network first learns, in PTNN mode, in an unsupervised
manner. It then switches, in OLNN mode, to a supervised mode for the
trained network to which it is attached.

The counter-propagation network was developed by Hecht-Nielsen
[1988] as a means to combine an unsupervised Kohonen layer with a
teachable output layer. This is yet another neural network topology to
synthesize complex classification problems while attempting to minimize the
number of processing elements and training time. The operation of the
counter-propagation network is similar to that of the learning vector
quantization network in that the middle Kohonen layer acts as an adaptive
look-up table, providing the closest fit to an input stimulus and outputting its
equivalent mapping [Ellingsen 1994].

More recently, efforts to apply adaptive technologies such as genetic
algorithms and simulated annealing techniques to the adaptation of a neural
network architecture have been explored [Alander 2001]. Other researchers
have attempted comprehensive strategies, such as the Adaptive Learning by
Evolutionary Computation system [Abraham 2001], an automatic
computational framework for optimizing neural networks wherein the neural
network structure and the learning algorithms are adapted according to the
problem.

From a verification perspective, the means and the mechanisms of neural
network architecture adaptation for the system in hand, whether restricted to
weight changes, or including topological modifications, should have been
verified as described previously in Section 2.1.1 before any pre-training or
online-learning is implemented. Similarly, the appropriateness of the chosen
means of modification should have been at least simulated with artificial

144 Chapter 6

adaptation scenarios. Those aspects of neural network architecture
verification are not repeated in this section; rather, the emphasis in Section
2.3 is on the special problems and conditions that real-time online adaptation
introduces, and how the verification process may address them.

2.3.2 Adaptation Through Learning: Supervised and Unsupervised

The verification process must take into account whether the OLNN
training is supervised, unsupervised, or some combination of the two. In one
sense, all neural network systems are supervised; that is, mechanisms and
procedures at some level of system control must be provided to constrain
and oversee when and what the neural network system is permitted to learn,
and thus how it will adapt. Validation through determining the
applicableness and verification through determining the correctness of those
supervision mechanisms must be considered a core fundamental component
of the neural network system verification process, whether such supervision
is considered to be a component of the total neural network system or
external to it. Some of the more prevalent learning mechanisms are
considered here.

In the traditional neural network sense, supervised learning refers to the
neural network being explicitly presented with a set of examples, the
supervised training epoch that includes not only the inputs that the neural
network is to observe, but also the outputs that the neural network is to
recall. This learning experience is explicitly controlled by an external source
or mechanism. This mechanism shall be termed the supervisor, and such
learning is termed supervised learning. The neural network initiates new
learning when toggled into leam-mode and presented an epoch on which to
train. Otherwise, the neural network functions in application-mode,
producing outputs to the inputs it is presented, based on its current state of
training.

In the case of unsupervised learning, the neural network is not presented
with matching sets of neural network inputs and outputs, such as may have
been prepared by an external supervisor. Instead, the learning rule, which is
part of the total neural network system, determines how appropriate outputs
are generated. Unsupervised learning is generally associated with pattern
classification-like problems in which a collection of data inputs are sorted
into several potential classes. The neural network may be indirectly
supervised by the external modification of learning rule parameters.

The learning rule parameters include such considerations as the number
of distinct classes to which an input may be classed, the similarity metric for
evaluating the similarity of an input to one class vs. another, and the transfer
functions that determine the shape of the functional hyper-planes that

Neural Network Verification 145

delineate the separate classes. For example, when in learning mode, an
SOM-based neural network system will adjust its weights and vectors to
reflect modification of how the solution space of all potential classes is
partitioned among the various classes.

The application of the unsupervised learning rule behaves the same
whether the system is training in PTNN mode on a training epoch, or is
being presented individual epoch data in OLNN mode. The learning rule
computations of weights and topological changes involve the same types of
computation for both PTNN and OLNN training.

The issues previously discussed in Section 2.1 regarding the verification
of training and learning of a PTNN are again apropos to an adaptive OLNN.
For example, the contents of the new epoch that forms the OLNN training
session still need to be quality controlled. While the learning rule algorithm
or heuristic automates the processing of inputs to generate new
modifications to neural network weights and topology, it does not perform
prescreening or pre-selection on the input data.

2.3.3 Novelty Detection: Implicit Supervision of Learning and
Operation

Additional preprocessing to filter out the potential of learning based on
inappropriate or incorrect data comes under the discipline of novelty
detection [Marsland 2003]. Statistical outlier detection [Williams 2002]
from the field of statistical theory is a similar concept. Novelty detection
applies both to learning and non-learning modes when inappropriate inputs
would lead to inappropriate outputs, which would be viewed as an example
of the "garbage in, garbage out" mantra. In this case, novelty detection
processing could be considered functionally to be one particular form of
supervision.

Novelty detection represents one approach to achieving quality control.
In the case of the PTNN, such qualification of the training epoch often may
occur prior to the training exercise, so that the novelty detection processing
effectively may be decoupled from the training process.

In the case of OLNN training, such a priori novelty detection is not
possible; however, other general approaches to providing such supervision
of the learning process exist:

1. The novelty detection ftinction may be integrated into the OLNN training
process, so that all necessary supervision is available in real-time.

2. Partial novelty detection may be performed as part of the real-time
OLNN training, so that the new learning may be conditionally verified,
while ultimate verification is performed post facto.

146 Chapter 6

Previously, Section 2.2.2 discussed Type I and Type II error situations.
Dependent on the purpose and functionality of the total system, of which the
neural network system is one component, the conditional verification may
refer to either of the above two situations. The Type I error situation would
be treated as a missed opportunity of not learning when one could have. The
Type II error situation would be treated as a false alarm of learning that
occurred when it should not have and that needs to be reversed.

To support a two-stage conditional-final verification strategy, the abiUty
and the resources to perform a post mortem analysis are needed. Given that
the OLNN training is to be subject to a post-mortem review as part of its
verification, the implication for system design and operation is that the
results of such OLNN training should be not only re-viewable but also
reversible, so that the undesirable results of incorrect, inappropriate, or
simply poor training may be reversed.

The additional functionality in support of this verification strategy may
be achieved in a variety of ways. For example, the state of the OLNN
preserved before the questionable training could be re-loadable. In such a
situation, the training epoch including the supervised response may need to
be archived, as well as the state of the network before and after the training.
This approach would imply a universal systems verification requirement for
the ability to archive and to recall the state of the OLNN for some point in
time. The implementation of those mechanisms that address such
requirements in turn must be verified.

For a complete, post facto verification, the analysis must consider both
the epochs on which the neural network was permitted to train and those
epochs that were rejected by the novelty detection process. Thus, both Type
I and Type II error situations are fully considered.

Such complete post facto verification serves more than just the original
purpose of verifying that the neural network is learning as it is currently
configured. This analysis also can support consideration of how the system
might be enhanced and improved to handle other scenarios currently beyond
its capability but reachable with appropriate modification to the original
neural network design and implementation.

2.3.4 Long-Term Verification: Maintaining Consistency

Statistically speaking, the asymptotic convergence of an estimator to the
object of estimation is called consistency. In the case of an adaptive OLNN
that learns and evolves over its lifetime of deployment, learning consistency
is a very important factor. Neural networks can be viewed mathematically
as being statistical esdmators.

Neural Network Verification 147

Most nonparametric algorithms are consistent for essentially any
regression function. Depending on the particular algorithm and the
particular regression, however, the convergence of such methods can be
extremely slow. Neural networks modeled after these algorithms, like those
based on the universal approximators discussed in Section 2.1.3, may require
significantly large training epochs.

There exist many consistent nonparametric estimators. Consequently,
given enough training examples, optimal decision rules can be arbitrarily
well approximated. Those studied extensively in the statistical literature
include: Parzen windows and nearest neighbor rules [Duda and Hart 1973],
regularization methods [Wahba 1982], and alternating conditional
expectations [Friedman 1991], as well as feed-forward neural networks
[Rumelhard 1986], and Boltzmann machines [Ackley 1985].

Section 2.1.3 discussed how the bias-variance dilemma can affect neural
network learning performance. In the case of the PTNN, considerable care
is required in the formation of appropriate training epochs. In the case of
adaptive continually learning OLNNs, this dilemma re-manifests itself
through the concept of consistency. The desired level of bias and variance
achieved during pre-training of the OLNN may later become degraded,
rather than improved, unless care is given to the online learning process to
preserve consistency.

White [1990] has described a procedure by which a feed-forward neural
network can be extended in a consistent manner. Major elements of the
method are:

1. Strategic goal, which is to decrease both bias and variance. The typical
manifestation of the bias-variance dilemma is to accept the expense of
increasing one while decreasing the other.

2. Implementation strategy, which is to gradually decrease both bias and
variance in a coordinated manner by increasing network size as new
epochs are applied.

Bias can be diminished by increasing network size through the number of
nodes and links in coordination with additional training from new epochs at
such a rate that the variance also is managed. If nodes are added too
quickly, bias can increase beyond acceptable tolerance. If they are added too
slowly, variance can increase beyond acceptable tolerance.

This procedure for achieving consistency of feed-forward networks also
can be applied as a general mechanism to manage learning consistency for
other OLNN architectures. The procedure is not trivial to implement since
the bias and variance both must tend to zero in coordination with each other.
The reduction must proceed slowly, in small incremental steps. Otherwise,

148 Chapter 6

bias or variance will dominate the training, and the conditions of over-fitting
and under-fitting may occur as the OLNN continues to learn.

From a practical standpoint, no neural network can be expected to grow
in size indefinitely. Consequently, the above described consistency
procedure must be adapted to the particular problem constraints and
engineering limitations. On the other hand, the general principle of selecting
sufficiently small steps by which to train and grow is still valid.

2.3.5 Incremental Verification: By Degrees

The previous discussion of consistency naturally leads to the concept of
incremental verification. The NASA sponsored RIACS Workshop [Pecheur
2000] on the V&V of adaptive systems raised the issue of incremental
verification: "How to dynamically verify at 'run-time' a continuously
adapting system (on-board V&V, incremental V&V, how to recover from
errors?)"

As the previous section discussed, neural network learning should
proceed in relatively small, incremental steps to achieve consistency, i.e., to
maintain control of bias and variance. Assuring that the bias-variance trade­
off is maintained within the levels planned for the OLNN as the OLNN
continues to learn is a significant aspect of the ongoing, quasi real-time,
V&V process.

The term incremental has multiple dimensions in the context of V&V:

• Temporal, which is new knowledge acquired incrementally, also may be
verified incrementally as it is learned.

• Component, which is verification of new training, may not cumulatively
re-verify all previous training.

• Layered, which means the verification may be tiered in levels of
confidence, with higher confidence levels achieved as addifional testing
is performed and case history accumulated.

Dependent on the problem domain being addressed, the verification
process may emphasize one or more of these dimensions of incrementality.

As new training is presented to the OLNN over time, learning based on
prior training may need re-verification. To what extent prior learning should
be revisited depends on the underlying nature of the knowledge and the
problem to which it is applied. The temporal nature of OLNN learning falls
into two general scenarios [Lange 1993]:

1. Monotonic learning: New training represents knowledge complementary
to prior training.

Neural Network Verification 149

2. Non-monotonic learning: New training represents knowledge partially
contradictory to prior training.

At least in theory, the monotonic learning case should be easier to
maintain a verified status. However, the practical problem is that while the
underlying knowledge may be monotonic, the learning process is not. The
previous discussions of the bias-variance dilemma and learning consistency
explained the impact of over-fitting and under-fitting. As a consequence of
the new training, the neural network performance on the prior test epoch
typically is degraded; although, total performance based on both prior and
new training may have improved.

The new training may be incrementally applied to the previously trained
OLNN in temporal order. In this case, the cumulative training epoch is not
composed of a randomized sampling of all underlying knowledge, since a
chronological ordering is imposed. This behavior may be acceptable and is
indeed desirable when a problem domain is time varying and the OLNN is
expected to track the underlying knowledge.

Other approaches for incorporating the new training that reduce and even
eliminate the time dependency in the training epoch are also available. For
example, to remove the chronological underpinning, a new cumulative
training set may be constructed as a randomized epoch that is a sampling
drawn from all current and prior training, and presented to an initialized
OLNN from which prior training has been removed. One draw back of this
approach is the need to accumulate an ever-growing dataset from which to
sample the new cumulative training epoch. Based on the bias-variance
dilemma discussion, this epoch, hopefully, will grow slowly.

Incremental verification of an adaptive OLNN-based controller in an
aircraft may emphasize temporal aspects since a given flight situation may
exist only momentarily, and thus the knowledge to be used is momentary. A
physical control element of an aircraft may become stuck or otherwise
perform sub-optimally, and the OLNN is to adapt to this situation, until the
situation is corrected. In such a scenario, the re-verification of prior training
may be counter-productive, since the current state of the dynamic
environment is what matters. In this case, some version of a sliding-window
verification strategy may be more appropriate.

The underlying knowledge and its application may be decomposed along
functional dimensions rather than based on chronological considerations. In
such cases, the training of each functional component may be independently
verified. However, interactions among the training of two or more
independent components may occur. This is the situation with a
classification problem where membership between two classes may be
ambiguous.

150 Chapter 6

An example of incremental verification that emphasizes
componentization is an interactive voice response unit, such as found in one
of today's cell phones. Each epoch, the voiceprint of the name of a person
to be called, represents a separate, conceptually independent, unit of
knowledge on which the OLNN is trained. Pragmatically, the potential
exists with each additional epoch for the contamination of prior training
epochs, dependent upon how similar the voiceprint may be to an earlier
entry.

The typical operational strategy is for a new voiceprint to be verified
when it is first entered. As the implementation of a simple version of cross-
validation, the user must enter the training phrase twice. The first time is
employed by the neural network to train and a second time verifies that
training. With successful completion of this point, the ability to recognize
the new voiceprint when it is spoken is considered verified. However, any
prior entries have not been re-verified, and some may no longer be correctly
processed due to contamination of their prior training by the recent training.
This is another example of the Type I vs. Type II error consideration
introduced in Section 2.2.2.

In the case of the voice-activated dialing of the cell phone, the Type I
error situation is addressed during the actual training, but the Type II
situation is deferred in a lazy incremental verification mode. In other words,
"Don't fix it until it is determined to be broken." The potential of having
introduced a Type II error situation is not deemed serious enough to have the
cell phone user retest each of the previously trained voiceprints each time a
new one is introduced.

The above example is but one of the many ways that the total verification
of the system can be decomposed based on a multitude of considerations
including: distinctness or independence of functional components or
knowledge. Type I vs. Type II error remediation, and urgency to verify
sooner vs. relaxation to verify later.

In contrast to the lazy incremental verification approach is the
employment of neural network systems in safety-critical problem domains.
The verification of neural network systems in such scenarios can include
their extensive exercise in a real-world setting, but with the additional
requirement of independent confirmation by other independent means, until
a sufficiently broad and complete case history of successful use has been
accumulated [Lisboa 2001]. With continued successes, such an OLNN
system may be promoted through a series of confidence levels. A typical set
of confidence levels could be:

Neural Network Verification 151

• Apprentice, in which every response must be independently confirmed,
• Novice, in which an ever enlarging well-defined subset of frequent

situations no longer requires independent confirmation, and ultimately
• Expert, in which the system itself has become an independent

confirmation source.

In the case of an advisory medical diagnostic system, a medical expert
may review the results produced by the system prior to any action based on
its recommendations. Providing for independent expert verification of the
learning and performance of an OLNN in real-time may not be so easily
realized.

In lieu of a full expert review by an independent source, other more
readily mechanized approaches may be employed that:

• Provide a level of confidence, e.g.. Type I error management, and
• Reduce the likelihood of catastrophic results, e.g.. Type II error

management.

Real-time techniques such as previously discussed novelty detection are
apropos to such an approach [Marsland 2003].

2.4 Fault Management-Based Verification

Defining characteristics of complex systems, such as are found in flight
control and robotics applications, include the following attributes:

• Adaptive, or the capacity or suitability for, or the tendency toward
change, modification, etc.

• Autonomous, or being free from external control and constraint in action
and judgment, independent in mind or judgment, self-directed.

• Non-deterministic, or the property that a computation or execution may
yield multiple plausible results.

Complex systems also may be safety critical, where human safety is at
risk, or mission critical, where system failure could impact the total mission
the system is supporting.

Such complex real-world problems must be solved as best they can be, in
spite of inherent uncertainties. Consequently, complex systems often may
perform less than optimally, less than intended or desired, and yet well
enough to accomplish significant aspects of the original task, and without
loss of life.

152 Chapter 6

This situation complicates not only the systems design and development
process, but also the V&V process. When the design of complex systems
incorporates these concepts and means, the V&V of such systems also must
address the implications of these concepts from a V&V perspective. Recent
research has focused on the V&V of such complex systems [Pecheur 2001].

2.4.1 Fault Management Framework

Systems design methodologies developed within the field of fault
management that address the uncertainty inherent in complex systems
include the following:

• Fault avoidance: Systems can be designed to be fault-free
• Fault removal: Faults can be removed from systems following their

design and implementation.
• Fault tolerance: Measures can be taken to ensure residual faults do not

cause failure.
• Graceful degradation: Perform sub-optimally, rather than cessation of

ftinction [Fed Std 1037C 2003].

These principles and methods not only constitute a framework to guide
the design, development, and deployment of complex systems, but also
provide the basis for a V&V framework for complex systems from a fault
management perspective.

The cumulative online learning experience of an OLNN changes with
each new learning epoch. The new epoch may:

• Strengthen prior learning,
• Represent new situations not previously addressed by prior pre-training

or online learning epochs,
• Contradict prior learning, a non-monotonic situation, or
• Lie outside the domain that the OLNN is intended to learn.

Each of the last three situations is prototypical of the situations addressed
by fault management.

2.4.2 Judging the Total Learning Experience

Determination of whether an OLNN should continue to be deemed V&V
certified at any given point in time involves an analysis of the cumulative
learning experience of the OLNN. That judgment encompasses three areas:

Neural Network Verification 15 3

1. Nature of the data applied as an OLNN learning epoch
2. Learning mechanism capabilities
3. Context surrounding that data

The first area refers to the quality of the inputs to the OLNN including
correctness, accuracy, and precision. If design assumptions made regarding
data quality are not satisfied, then the usefulness of results produced by the
OLNN is questionable. Concern also exists as to whether such data should
be the basis for further learning. This topic was addressed in Section 2.1.2.

Various aspects of the neural network system determine the learning
mechanism capabilities. This topic was explored in Section 2.L1.

The context of the epoch encompasses additional information not directly
ingested by the OLNN that, nevertheless, could be pertinent to whether the
epoch ought to be learned or ignored, or requires special treatment.

Based on faulty management principles, the contextual space of the
OLNN may be partitioned into normal operations for which the system is
designed or abnormalities for which the system is not explicitly designed

Abnormalities are further decomposed into abnormalities the OLNN is
expected to accommodate, and those that cannot or purposely should not be
accommodated.

2.4.3 Context Safety Monitoring

The approach to V&V of accommodating anomalies complements the
fault management concepts of fault avoidance and fault tolerance. It
assesses to what extent and by what means the OLNN can tolerate various
types of abnormalities or faults.

Dr. Bojan Cukic has considered the concepts of data sniffing and novelty
detection as potential approaches to address this problem [Liu 2002a]. Data
sniffing involves real-time monitoring of inputs and outputs of the OLNN to
identify the two situations: one to be learned by the OLNN, the other to be
ignored [Liu 2002b]. Novelty detection is defined as the process of finding
or detecting novel events or data.

Novelty detection serves two roles:

1. OLNN learning: Identify abnormal inputs that should not be part of a
learning regime.

2. Non-learning mode: Avoid inputs outside the scope that the OLNN is to
handle.

In both cases, the OLNN's corresponding outputs are judged novel, as
they would be based on novel or questionable inputs.

154 Chapter 6

Researchers have proposed and investigated various implementations of
this technique. The approaches fall within two general categories:

1. Statistical, including certain data mining strategies, and
2. Machine learning, which employs neural networks or other connection

models to predict novelty.

Marsland [2003] has completed a comprehensive survey of novelty
detection and its relationship to learning systems. Novelty defined by
statistical models is based on the unconditional probability density function
of data. In machine learning approaches, novelty is based on pre-defined
classification of data and on the learning performance of such models.

2.4.4 System Adaptation: Specialization

This first step, recognition of a novelty, is the easier aspect of fault
management. The more complicated aspect is determination of what should
be done regarding detected novelties. Actions directed at the neural network
can include adjustment of the OLNN's learning epochs, algorithms, and
neural network architecture. Other actions may be directed toward the
neural network environment.

Perhaps the simplest action is data blocking:

• Blocking inputs to the OLNN reduces potential of incorrect or
inappropriate learning.

• Blocking outputs from the OLNN prevents delivery of questionable
results to downstream system components.

In terms of fault management, such an approach necessarily presumes
that fall-back, or fail-over, methods are available to the total system external
to OLNN processing so the total system is able to function in such cases
without benefit of the OLNN.

Such simplistic actions may be apropos for the case where only normal
well-defined situations constitute the total operational domain of the OLNN.
Outlier situations [Hodge 2004] are categorically rejected.

This scenario is typical of a skills-based problem domain where the
purpose of online learning is to improve upon prior learning, but otherwise
to avoid new or novel situations. OLNN learning in this scenario falls into
the category termed specialization. Since emphasis is on achieving system
improvement, the emphasis of fault management is on its first two
dimensions: fault avoidance and fault removal.

Neural Network Verification 155

In what are otherwise normal contexts where no novelty is detected, the
OLNN through learning becomes increasingly matched to the addressed
problem. The specialization scenario constitutes continual refinement and
improvement of what already is known. This is a monotonic learning
situation, one in which the system does not learn knowledge that contradicts
what already is known [Mili 2002].

2.4.5 System Adaptation: Generalization

More complex than specialization is the problem space category termed
generalization, to successfully perform an increasingly varied set of tasks.
In the case of generalization, what is considered and treated as abnormal is
continually changing. To detect a novel situation and simply ignore it like it
was in the previously discussed data-blocking scenario, is not an acceptable
solution.

The novelty judgment process includes both the detection of a novelty,
and an assessment of what should be done. The OLNN system is to learn
that total judgment. For this type of system, the emphasis of fault
management is on system robustness through its last two dimensions: fault
tolerance and graceful degradation.

The generalization scenario expands the domain of operations and hence
breadth of knowledge of the OLNN. The system must continually
redistribute its finite set of resources; it can learn, recall, and execute only so
much, so quickly. Consequently, the generalization of the OLNN may result
in it performing a prior task less well than before, yet still within accepted
tolerance. This is an example of a non-monotonic learning situation [Bain
1991].

As the OLNN system adapts to current anomalies, they become
subsumed into the normal operational domain of the system. For this class
of system, the previously introduced normal vs. abnormal dichotomy is
further expanded:

1. Normal today, or part of normal operations
2. Conditionally abnormal, or today abnormal, but can accommodate via

neural network training
3. Absolutely abnormal, or always to be avoided

Absolutely abnormal events are handled in the same manner for both the
generalist and the specialization scenarios. Absolutely abnormal
circumstances are to be detected and avoided - absolutely! Furthermore,
they need to be absolutely determinable, likely by algorithmic methods.

156 Chapter 6

For example, a fighter plane absolutely is not to accelerate beyond a pre­
determined critical velocity. This value is an external system design
constraint that can be algorithmically determined and enforced.

The boundary between the conditionally abnormal and the absolutely
abnormal may be continuous, which is a situation where graceful
degradation becomes an issue. In the case where this boundary is
discontinuous, an arbitrary margin of safety may be suggested.

2.4.6 Conditionally Abnormal Novelties

Novelty management involves two components:

1. Detection, which is recognition of the situation, be it by data sniffing or
novelty detection.

2. Judgment, which is assessment of how to respond, both now and in the
future.

Novelty judgment can involve many possibilities ranging from
categorically ignoring a detected novelty, to the potentially complex process
of capturing relevant information for the construction of an appropriate
learning epoch that responds to anticipated future occurrences of that
novelty.

A simple form of novelty detection is for the system component
providing input to the OLNN to also indicate a confidence in the validity and
accuracy of the input. This judgment could range from a simple "go/no go"
flag, to a detailed analysis of that input. The simplest novelty detection
provides the OLNN with no guidance as to why particular inputs have been
flagged.

Introduction of boundary artifacts, such as margin of safety rules, leads to
other considerations. A particularly interesting case involves determination
of "when to break the rules," a problem found of human-in-the-loop
systems. This problem has been studied extensively by human factors
analysis (HFA) [Naval Safety Center 1996], a special subset of fault
management that focuses on human-in-the-loop systems. Based on HFA, a
priori decisions are made regarding how human-in-the-loop systems can be
better designed and operated [Reason 1990]. This insight is generally
apropos to complex systems, with or without a human-in-the-loop, and to
OLNNs in particular [Smith 2003].

Neural Network Verification 157

2.4.7 Managing System Inertia and Momentum

More detailed examples of novelty detection analysis and novelty
judgment could consider not only absolute changes of input values, but also
the rate of change of inputs within an otherwise normal absolute range.

Rather than the use of arbitrary margin of safety rules, the concept of
system inertia and momentum leverages rate-of-change information
collected via data sniffing together with knowledge of the system's absolute
boundaries to provide a foundation for predicting the system's likelihood of
having sufficient time, flexibility, and resources to adapt to impending or
evolving situations.

The novelty management process may be incorporated into the OLNN
learning process so that an OLNN's novelty detection and response can
improve through online learning. The novelty management subsystem may
itself be implemented as another OLNN or embedded within the original
OLNN.

2.4.8 Fault Avoidance vs. Fault Tolerance

The discussion of fault management verification up to now has focused
on fault avoidance in the sense of preventing any occurrence of improper
learning or inappropriate processing by the OLNN. This perspective
presumes that all novelties are detectable and that appropriate actions can
always be taken in a timely manner. The existence of perfect estimators and
predictors enable fault avoidance.

In the absence of such perfection, fault removal, fault tolerance, and
graceful degradation move to center stage. A fault can occur in a variety of
ways and for a variety of reasons. It could be an isolated event, or it could
be the result of a chain of events, as typified in human factors analysis [Bird
1974].

The novelty may be improperly recognized or diagnosed, resulting in a
false positive, a situation is treated as a novelty when in fact it isn't, or in a
false negative, where a given novelty deserving treatment is not detected.
Such situations are further complicated when the true nature is not or cannot
be resolved conclusively until after the fact.

From a fault tolerance perspective, data sniffing and novelty detection are
applicable not only to guide correct and proper learning, but also to detect
and remediate incorrectly or inappropriately learned information. Such fault
tolerance principles are embodied, for example, in the two-phase commit
employed by distributed database systems.

Finally, an OLNN may be employed in complex systems where the
handling of what would be novelties for most systems is in fact the norm for

158 Chapter 6

that OLNN. The verification of such complex systems must be able to
support such fault management concepts as fault removal, fault tolerance,
and graceful degradation. The V&V of such systems should address not
only their implementation of fault avoidance, but also their support of fault
removal, fault tolerance, and graceful degradation.

3. SUMMARY

The reader is presumed to have a general knowledge of V&V
methodologies. This chapter has attempted to provide a solid grounding and
understanding regarding major verification issues that are peculiar to neural
network based systems.

Four general areas have been addressed:

1. White-box verification: Verification of the major system and structural
components, which include not only the neural network architecture and
topology, but also the learning process and the knowledge to be
encapsulated within the neural network.

2. Black-box verification: Verification of the neural network functioning
and processing, which includes both its learning and its generalization
modes of operation.

3. Adaptive verification: Verification issues focused on adaptive neural
network systems.

4. Fault management verification: Verification of the neural network
system to avoid or recover from error or fault situations.

The references are selected to provide the reader with a comprehensive
set of survey references that are readily assessable to those with limited
knowledge of neural network technology.

REFERENCES

Abraham, A, and B. Nath. 2000. Hybrid Heuristics for Optimal Design Of Artificial Neural
Networks. Third International Conference on Recent Advances in Soft Computing
(RASC2000). England, June.

Abraham, A. and B. Nath. 2001. ALEC-An Adaptive Learning Framework for Optimizing
Artificial Neural Networks. Computational Science. Edited by Vassil N. Alexandrov et. al.
Germany: Springer-Verlag.

Ackley, D.H., Hinton, G.E., and Sejnowski, T.J. 1985. A Learning Algorithm for Boltzmann
Machines. Cognitive Science 9.

Neural Network Verification 15 9

Alander, Jarmo T. 2001. An Indexed Bibliography of Genetic Algorithms and Neural
Networks, University of Finland, Report Series No. 94-1-NN, Draft, March 11.

Anderson, T.W. 2003. An Introduction to Multivariate Statistical Analysis. V^ Edition. John
Wiley & Sons.

Backus, John. 1978. Can Programming Be Liberated From the Von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications oftheACM2(S).

Bain, M. Bain and S. Muggleton. 1991. Non-Monotonic Learning. In Machine Intelligence
12. Edited by J.E. Hayes-Michie and E. Tyugu. Oxford University Press.

Bird, Jr. Frank E. 1974. Management Guide to Loss Control. Atlanta: Institute Press.
Chandra, P., Y. Singh. 2004. A Case for the Self-Adaptation of Activation Functions in FF

Neural Networks. Neurocomputing 56:447-454.
Cherkassky, V., J.H. Friedman, and H. Wechler (Eds.) 1994. From Statistics to Neural

Networks: Theory and Pattern Recognition Applications. (NATO ASI Series) New York,
NY: Springer-Verlag.

David W. Coit and Alice E. Smith. 1995. Using Designed Experiments to Produce Robust
Neural Network Models of Manufacturing Processes. Proceedings of the Fourth Industrial
Engineering Research Conference, Nashville, TN, May 1995, 229-238.

Coit, D. W., Jackson, B. T. and Smith, A. E. 1998. Static Neural Network Process Models:
Considerations and Case Studies. International Journal of Production Research 6:2953-
2967.

Cukic, Bojan, Brian J. Taylor, and Harhsinder Singh. 2002. Automated Generation of Test
Trajectories for Embedded Flight Control Systems. International Journal of Software
Engineering and Knowledge Engineering 12(2): 175-200.

Dally, William J., Patrick Hanrahan, Mattan Erez, Timothy J. Knight, Francois Labonte,
Jung-Ho Ahn, Nuwan Jayasena, Ujval J. Kapasi, Abhishek Das Jayanth Gummaraju Ian
Buck. 2003. Merrimac: Supercomputing with Streams. SC'03, November 15-21.

Darbari,Ashish. 2000. Rule Extraction from Trained Neural Network: A Survey. Technical
Report, Institute of Artificial Intelligence, Dept. of Computer Science, TU Dresden,
Germany.

Duch, Wlodzisaw, and Norbert Jankowski. 1999. Survey of Neural Transfer Functions.
Neural Computing Surveys 2:163-212.

Duch, W., and N. Jankowski. 2001. Transfer Functions: Hidden Possibilities for Better Neural
Networks. In 9th European Symposium on Artificial Neural Networks 81-94, Bruges,
Belgium.

Duda, R. and P. Hart. 1973. Pattern Classification and Scene Analysis. NY: Wiley.
Efron, B. 1982. The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM NSFCBMS,

Monograph 38.
Ellingsen, B.K. 1994. A Comparative Analysis of Backpropagation and Counterpropagation

Neural Networks. Neural Network World 4(6):7\9-134.
FDA. 1998. Guidance for FDA Reviewers and Industry. Office of Device Evaluation, US

Department of Health and Human Services, May 29.
Fed Std 1037C. 1996. Telecommunications: Glossary of Telecommunication Terms. Federal

Standard 1037C, General Services Administration, August 7.
Friedman, J.H. 1991. Multivariate Adaptive Regression Splines. Ann. Statist. 19:1-141.
Geman, S., E. Bienenstock and R. Doursat. 1992. Neural Networks and the Bias/Variance

Dilemma. Neural Computation 4(1): 1-58.
Hand, David J., Heikki Mannila, Padhraic Smyth. 2001. Principles of Data Mining (Adaptive

Computation and Machine Learning. MIT Press.

160 Chapter 6

Hecht-Nielsen, R. 1988. Applications of Counterpropagation Networks. Neural Networks
1:131-139.

Hodge, V. J. and J. Austin. 2004. A Survey of Outlier Detection Methodologies. Artificial
Intelligence Review.

Jankowski, N. and W. Duch. 2001. Optimal Transfer Function Neural Networks. 9th
European Symposium on Artificial Neural Networks. 101 -106.

Kohonen, T. 1988. Self-Organization and Associative Memory, Second Edition, New York:
Springer-Verlag.

Lange, Steffen and Thomas Zeugmann. 1993. Monotonic Versus Non-monotonic Language
Learning. In Proc. 2nd International Workshop on Nonmonotonic and Inductive Logic.
Lecture Notes in Artificial Intelligence 659:254 - 269. Edited by G. Brewka, K.P. Jantke
and P.H. Schmitt. Springer-Verlag.

Lisboa, P.J.G. 2001. Industrial Use of Safety-Related Artificial Neural Networks.
HSE/Liverpool John Moores University HSE Books.

Lisboa, P.J.G. 2002. A Review of Evidence of Health Benefit from Artificial Neural
Networks in Medical Intervention. Neural Networks, Invited Paper, 15(l):3-9.

Liu, Yan. 2002a. Verification and Validation of Online Adaptive Systems. Doctoral Proposal,
Lane Department of Computer Science and Electrical Engineering, West Virginia
University.

Liu, Yan, Tim Menzies, and Bojan Cukic. 2002b. Data Sniffing - Monitoring of Machine
Learning for Online Adaptive Systems. Nth IEEE International Conference on Tools with
Artificial Intelligence (ICTAI'Ol).

Marsland ,Stephen. 2003. Novelty Detection in Learning Systems. Neural Computing Surveys
3:157-195.

Math Works. 2004. Neural Network Toolbox.
http://www.mathworks.com/products/neuralnet/.

Mili, A. Mili, B, Cukic, Y. Liu and R.B. Ayed. 2002. Towards the Verification and Validation
of Online Adaptive Systems. Accepted for Special Volume of CI in SE.

Miller, R.G. 1974. The Jackknife a Review. Biometrika 61:1-15.
Mitchell, Tom M. 1997. Machine Learning. McGraw-Hill.
Mohamed, Abdil Rashid. 2000. Built-in Self-Test (BIST), Embedded Systems Laboratory

(ESLAB) Embedded Systems Laboratory (ESLAB), Linkoping Linkoping University,
University, Sweden, http://www.ida.liu.se/~zebpe/teaching/test/lec 12.pdf

Moody, J. 1994. Prediction Risk and Architecture Selection for Neural Networks. In From
Statistics to Neural Networks: Theory and Pattern Recognition Applications. Edited by
V.Cherkassky, J.H.Friedman and H.Wechsler. NATO ASI Series F. New York:
SpringerVerlag. 147-165.

Naval Safety Center. 1996. Quality Management Board Charter - Reducing Human Error in
Naval Air Operations.

Nichols, K. 2003. A Reconfigurable Computing Architecture for Implementing Artificial
Neural Networks on FPGA. Masters Thesis. University of Guelph.

Nikolay Nikolaev. 2003. Neural Network Tuning and Overfitting Avoidance, CIS 311:
Neural Networks. Department of Computing, Goldsmiths College, University of London.
http://homepages.gold.ac.Uk/nikolaev/31 lover.htm.

Pai, D. V. and H. N. Mhaskar. 2000. Fundamentals of Approximation Theory. C R C Press.
Pecheur, Charles, Reid Simmons, and Willem Visser. 2000. Issues in Verification and

Validation of Autonomous and Adaptive Systems. RIACS Workshop On the Verification
and Validation of Autonomous and Adaptive Systems. Asilomar, CA, 5-7.

Neural Network Verification 161

Pecheur, Charles, Willem Visser, and Reid Simmons. 2001. RIACS Workshop on the
Verification and VaHdation of Autonomous and Adaptive Systems. Technical Report 01 -
20, RIACS, USRA.

Ragg, Thomas, Heinrich Braun, and Heiko Landsberg. 1997a. A Comparative Study of
Neural Network Optimization Techniques. In Proceedings of the ICNNGA 97, Norwich,
UK.

Ragg, Thomas, Steffen Gutjahr, and Hai Ming Sa. 1997b. Automatic Determination of
Optimal Network Topologies based on Information Theory and Evolution. Euromicro '97.
Track on Computational Intelligence.

Reason, James. 1990. Human Error. New York: Cambridge University Press.
Richards, D.W. 1989. Smart BIT: a Plan for Intelligent Built-in Test. Aerospace and

Electronic Systems Magazine 4(l):26-29.
Rumelhart, D. and J. McClelland. 1986. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition. Cambridge: MIT Press.
Sundararajan, N. and P. Saratchandran. 1998. Parallel Architectures for Artificial Neural

Networks : Paradigms and Implementations, H\ edition. Wiley-IEEE Computer Society
Press.

Smith, James. 2003. Certification of On-Line Learning Neural Networks. Artificial
Intelligence and Soft Computing (ASC 2003). Banff, Canada, July 14-16.

Stone, M. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions. Journal
of the Royal Statistical Society, Series B 36:111-147.

Twomey, Janet M., and Alice E. Smith. 1993. Nonparametric Error Estimation Methods for
Validating Artificial Neural Networks. Intelligent Engineering Systems Through Artificial
Neural Networks 3:233-238. Edited by C. H. Dagli, L. I. Burke, B. R. Fernandez, and J.
Ghosh. ASME Press.

Twomey, Janet M., and Alice E. Smith. 1997. Validation and Verification. In Artificial
Neural Networks for Civil Engineers: Fundamentals and Applications 44-64. Edited by N.
Kartam, I. Flood and J. Garrett. ASCE press.

Twomey, Janet M. and Alice E. Smith. 1998. Bias and Variance of Validation Methods for
Function Approximation Neural Networks Under Conditions of Sparse Data. IEEE
Transactions on Systems, Man, and Cybernetics, Part C 28(3):417-430.

van der Zwaag, B.J., C.H. Slump, and L. Spaanenburg. 2002. Process Identification Through
Modular Neural Networks and Rule Extraction. In Computational Intelligent Systems for
Applied Research (Proceedings of the 5th International FLINS Conference 268-277.
Edited by D. Ruan, P. D'hondt, and E.E. Kerre. World Scientific.

Wahba. Constrained Regularization for Ill-Posed Linear Operator Equations, with
Applications in Meteorology and Medicine. In Statistical Decision Theory and Related
Topics. Edited by S.Gupta und J.Berger. 2:383-418. New York: Academic Press.

Weiss, S. M. and C. A. Kulikowski. 1991. Computer Systems that Learn. San Mateo, CA:
Morgan Kaufmann Publishers, Inc.

White, H. 1990. Connectionist Nonparametric Regression: Multilayer Feed-forward Networks
Can Learn Arbitrary Mappings. Neural Networks 3:535-549.

Williams, Graham, Rohan Baxter, Hongxing He, Simon Hawkins and Lifang Gu 2002. A
Comparative Study of RNN for Outlier Detection in Data Mining. Proceedings of the 2nd
IEEE International Conference on Data Mining (ICDM02).

Chapter 7

NEURAL NETWORK VISUALIZATION
TECHNIQUES

Marjorie Darrah
Institute for Scientific Research, Inc.

1. INTRODUCTION

Visualization techniques are important for the verification and validation
(V&V) of neural networks. Designers, end-users, and V&V practitioners
need to understand the design and performance of the neural network
system. Visualization can be useful in meeting these goals.

Understanding the design and operation of neural networks is no
elementary task. Neural networks used for solving real-world problems may
have several thousand connections. Understanding the connections formed
by the network during the learning process requires making sense of a vast
amount of real-valued parameters. Visualization can help bridge the
cognitive gap by representing relationships in the neural network and by
examining how those relationships evolve.

In this chapter various visualization techniques are presented. Several
commonly used commercial neural network design packages will be
introduced along with a discussion of their visualization capabilities. Also
included is a discussion of how visualization techniques can be used for
V&V at various stages across the software development lifecycle.

Understanding the design and operation of neural networks is no
elementary task. Neural networks used for solving real-world problems may
have several thousand connections. Understanding the connections formed
by the network during the learning process requires making sense of a vast
amount of real-valued parameters. Visualization can help bridge the
cognitive gap by representing relationships in the neural and by examining
how those relationships evolve.

164 Chapter 7

There are two types of neural network visualization techniques that may
provide benefit: whitebox and blackbox. Whitebox techniques provide a
view of the internal workings and processes of the neural network. These
techniques could be used together with flow analysis to assist understanding
of the interactions of the neural network nodes, links, and weights.
Blackbox techniques provide representations that correlate inputs to outputs.
The interpretation of the visual representation in a blackbox technique is left
up to speculation or intuition. An example of such a blackbox technique
would be a 3D flight simulation that shows the reaction of the aircraft with a
neural network controller in use.

Visualization may assist neural network users in discovering data
features whose importance was not previously recognized. Humans have
highly developed abilities for visual pattern recognition that can be
capitalized when vast quantities of data are transformed into a qualitatively
different form. Changes that occur during training may also be detected
using these techniques because errors or patterns may appear as visual
anomalies. Additionally, visualization software can provide an interactive
mechanism that enables the user to adjust parameters and quickly see the
effects of the changes.

Visualization can aid in both developing and understanding systems
involving neural networks. Personnel involved in verifying and validating
such systems may have little or no knowledge of the workings of a neural
network. Through the use of visualization techniques, such as simple neuron
models, the MATLAB Neural Network Toolbox, or even 3D visualizations,
the understanding can be increased.

2. VISUALIZATION TECHNIQUES FOR NEURAL
NETWORKS IN ACADEMIC LITERATURE

The first step in understanding a neural network is to comprehend the
design. For most neural networks there are representations that present
network structure and the way connections are formed to create the flow of
data from input to output. Chapter 4 gives an overview of various neural
network structures and provides visual representations of these structures.

Many visualization techniques that assist in the understanding of neural
networks have been discussed in the academic literature. Craven and
Shavlik [1992] discussed several visualization techniques in an overview
paper titled "Visualizing Learning and Computation in Artificial Neural
Networks." Many of the techniques summarized in this section can be
further studied in their survey paper. Other authors, such as Vesanto [1998],
have even used virtual reality 3D models to try to gain understanding of the

Neural Network Visualization Techniques 165

networks. These techniques provide insight into the decision-making and
the learning processes of neural networks. This section introduces several
techniques with a brief description of how they assist in the understanding of
the neural network.

The Hinton diagram, developed in 1986, was one of the first visualization
methods. It provides a compact visual display of the weights and biases
related to a particular neural network [Hinton 1986]. Fig. 7-1 depicts a
neural network and the Hinton diagram to visualize the network.

Hinton
diagram

Neural
network

TO
OLTTPUT

TO FROM
HIDDEN UNITS II

OUTPUT

FROM
INPUTS

r

s.,n n D n
Figure 7-1. Simple Neural Network and Related Hinton Diagram

These diagrams show the two hidden units and the output unit of the
network. The boxes in the lower part of each diagram depict weights from
hidden units, and the boxes in the middle of each diagram depict a weight to
the output unit. A unit's bias is drawn in the position in the unit's diagram
where weights to and from the unit are shown in the other diagrams. The
Hinton diagram is a rather weak method for visualization because the
topology is not readily apparent from the diagram, and it does not clearly
show how a unit partitions its input space.

Wejchert and Tesauro [1990] developed the bond diagram. This
visualization method illustrates the sign and magnitude of each weight and
bias in the network, but, unlike the Hinton diagram, it does show the
topology of the neural network. In the bond diagram each unit is represented
as a disk. The size of the disk indicates the magnitude of the unit's bias.

166 Chapter 7

The bonds that link the disks represent the weights. The amount (width) of
the bond indicates the magnitude of the weight, and the color represents the
sign. Fig. 7-2 below shows a bond diagram for the simple neural network
structure presented in Fig. 7-1 on the previous page.

INPUTl

OUTPUT

»

IN7UT2

Figure 7-2. Bond Diagram

One way to visualize the learning process is to graphically display the
movement of the hyperplane in the input space of the unit that the
hyperplane represents [Munro 1991; Pratt 1991]. A hyperplane diagram can
show how hidden units make decisions in an input space defined by input
units, or it can show how output units make decisions in an input space
defined by hidden units. Fig. 7-3 shows the hyperplane diagram of a neural
network.

lA

INPUT2

X ^

SJaui

\ +

\ ^ i

INPUT I

Figure 7-3. Hyperplane Diagram

The axes of the diagram denote the range of activations that may be
propagated to the units through their incoming connections. Data points that

Neural Network Visualization Techniques 167

a network is learning to classify may be plotted in the space. Each hidden
unit of the network is represented by the hyperplane (in this case the line)
that indicates how the unit is partitioning the input space. The learning
process is automated by showing the movement of the hyperplane as the
weights and biases of the network are changed.

One limitation of a hyperplane diagram is that only two- or
three-dimensional input spaces can be depicted. Selecting a two- or
three-dimensional projection of the actual input space may be used to depict
an input space of higher dimensionality. There may be a problem choosing
which projection to view. Statistical techniques, such as principal
component analysis or canonical discriminant analysis, may be useful in
determining which projections would provide the most information.

Hyperplane representation can also be animated. Pratt and Nicodemus
[Pratt 1993] reported on case studies using a hyperplane animator that they
developed, pictured in Fig. 7-4. The animator is able to display the
relationship between a network and the training data, and is also able to
show the changes in that relationship during learning.

nii^
IhlEl QJI". &1Hî r/|iE°E^T| P^S£| R£SUI-Ej jXCRJi M i i iH-: | VM Calcrt. |SPV£ Colar«|

n ! ffi I' ffl n ffl

TPitoPtO TTralnPti

Fciit Sir*

Jpgin>kip

Ski3 tS Epo*. jtartinq ai E

r^ DH

Figure 7-4. Sample Screen from Hyperplane Animator (© 1993 IEEE)

168 Chapter 7

The trajectory diagram is another visualization method developed by
Wejchert and Tesauro [1990]. The trajectory diagram is designed to provide
insight into the weight space for a given problem. A trajectory diagram
depicts the movement of a given unit through the weight space. Fig. 7-5
shows the trajectory over a hypothetical training session.

Figure 7-5. Trajectory Diagram

The trajectory in Fig. 7.5 above is plotted in the space defined by the two
weights impinging on this hidden unit. The thickness of the trajectory line
indicates the network error along the trajectory. A network unit at a given
point in time is plotted as a point in the diagram; the coordinates of the point
are specified by the values of the weights feeding into the unit. As learning
progresses, the point is replotted to reflect the updated values of its incoming
weights.

A weakness of the trajectory diagram is the inability to visualize
high-dimensional weight spaces. These diagrams have only minimal
usefulness because of this limitation. Attempts to visualize higher
dimension weight spaces by projection may lead to diagrams that are not
unique.

A graphical interface for visualizing knowledge-based neural networks
has been developed by the University of Wisconsin. A weakness of
conventional neural networks is that they provide no way to exploit existing
knowledge about the problem to be solved. The knowledge-based neural
network (KBANN) algorithm [Towell 1990] provides an approach to
incorporating existing knowledge into a neural network. The KBANN
algorithm uses a knowledge base of domain-specific inference rules in the
form of PROLOG-like clauses to determine the topology and initial weights
of a neural network. The domain theory does not need to be complete or
correct; it needs only to support approximately correct domain reasoning.

Neural Network Visualization Techniques 169

KB ANN translates a domain theory into a neural network in which units and
links correspond to parts of the domain theory. Consider the domain theory
for recognizing cups, which is depicted in Fig. 7-6.

open-vessel

cup
stable
liftable
graspable
open-vessel

stable, liftable, open-vessel
flat-bottom
graspable, light
has-handle
has-concavity, concavity-up

Figure 7-6. Hierarchical Structure of Cup Domain Theory

The hierarchical structure of the domain determines the topology of the
knowledge-based neural network: the input units of the network represent
the base-level facts of the domain theory, the hidden units represent
intermediate conclusions, and the output unit represents the final conclusion.
After the network topology and initial weights have been determined by
KB ANN, the network is trained using the back-propagation algorithm and a
set of training examples. After training, refined rules can be extracted from
the network [Towell 1991].

Lascaux is another tool developed by the same group at the University of
Wisconsin. It assists in further visualizing the neural network both during
and after learning. This tool enables visualization of the learning process by
depicting forward propagation of activations, backward propagation of error,
and changes to the weights and biases of the network. Each box represents a
network unit. Lines that connect the units represent network weights. The
thickness of each line indicates its magnitude, with positive weights drawn
as solid lines and negative weights as dashed lines. Fig. 7-7 on the next page
shows the interface provided by the Lascaux tool.

170 Chapter 7

Figure 7-7. Lascaux Depiction of a Knowledge-based Neural Network

The diagram in Fig. 7-7 plots the activation function for a unit on a scale
that is defined by the range of the net input values that the unit could have.
Thus, the rightmost edge of the diagram shows the activation value that
would result if the unit were to receive its maximum net input. The leftmost
edge shows the activation that would result if the unit were to receive its
minimum net input. The actual net input that results for a given pattern is
displayed as a solid vertical line in the diagram. This displays the effective
activation. It is valuable to describe the nature of the activation function
relative to its weight space and to show the relative influence of the weights
and biases. Lascaux also provides a mechanism to specify a "freeze" display
that lets the user progress step-by-step through a set of input patterns.

Lascaux provides the same functionality whether it is used with
conventional neural networks or with KBANNs. The tool aids in
understanding the refinements that occur during learning by animating the
weight changes. This can help explain why the network has made a
particular decision.

Vesanto [1999] has developed several techniques for visualizing a Self-
Organizing Map (SOM). An SOM is an unsupervised neural network that
organizes a set of model vectors during training so as to represent the
distribution and topology of the training data. One of the advantages of the
SOM is that the structure is highly visual. When the model vectors are
organized on a 2D grid, the SOM can be visualized using methods like
component planes view and the unified distance matrix (u-matrix).
Typically the visualization is done using color images.

Fig. 7-8 on the next page represents the overall shape of the data cloud by
making projection of the prototype vectors to a lower dimension. Although

Neural Network Visualization Techniques 171

the reproductions of these figures are in grayscale, the color in the original
figures adds much to the information. The reader is encouraged to look at
the original figures for further investigation. Two projections of the SOM
trained on data have been made, one is 2D (a) and the other is 3D (b). In (a)
each dot corresponds to one map unit, the color of which has been taken
from the color-coding in (c). Each map unit has been connected to its
neighbors with lines. From (a) several clusters can be seen as concentration
of data. The 3D-projection in (b) provides a better view of the separation.

(a) 2D projection (h) 3D projection (c) Color coding

Figure 7-8. SOM Visualizations [Vesanto 1999]

Vesanto provides other visual techniques for understanding SOMs. In
Fig. 7-9 (a) on the next page each dot corresponds to one map unit. The x-
and y-coordinates of the dots have been taken from two variables of the
vectors. Each dot is also given a color according to the color-coding of the
map units shown in (b). In addition to color-coding, (b) also uses size to
indicate clusters in the map. It can be seen that for most units, especially
yellow color-coding, the two components are linearly correlated.
Conversely, the units with orange color have another distinct pattern that
tells information about the relationship of the two variables.

Along with the many other visual techniques for SOMs discussed by
Vesanto in his paper, he also has a website [Vesanto 1998] that shows how
he used Virtual Reality Modeling Language (VRML) to develop 3D
visualization tools for the analysis of the SOM. VRML offers powerful and
easily useable methods for visualizing 3D objects and scenes and enables the
user to interact with the VRML model. Fig. 7-10 is a 3D model of a SOM
that has been visualized using VRML. Several views are available and the
model can be manipulated and moved in the virtual space.

172 Chapter 7

iir*fi J B •

^9 • • • • #9« • • •$> • • M A

• • • • # # • • • # # # •
• • • • • • • • • • ? *
• • • • • • # • • . • # # 4 l « • « • •

• • • • • • • • • • # • # #
9* • • • • • • ^ • • • A ^ t o

(a) Scatter plot (h) Color map

Figure 7-9. SOM Scatter Plot and Color Map [Vesanto 1999]

I^BTIKTU I ^^Q^^B H^BPEH

'1 r
SjWU«Jf^vrotW^Ujilii rt.^^^

F/gt/re 7-7^. 3D Model of a SOM using VRML [Vesanto 1998]

3. COMMERCIAL SOFTWARE PACKAGES WITH
VISUALIZATION CAPABILITIES

There are many commercial packages for developing neural networks.
These packages offer various graphical user interfaces (GUI) and various
visualization techniques. This section focuses on what several different

Neural Network Visualization Techniques 173

software products offer with respect to the visualization of neural networks
to facilitate understanding.

3,1 MATLAB® Neural Network Toolbox

The MATLAB® Neural Network Toolbox^ is an additional software
package for MATLAB that provides functions, utilities, and help for creating
and training neural networks. Its usefulness in regards to the V&V of neural
networks lies with simulation and visualization.

The tool allows for construction of most types of neural networks and
even provides special utilities for back-propagation networks, radial basis
functions, SOMs, and recurrent networks. Once in a model within
MATLAB/Simulink®, the network can be trained, tested, simulated, and
studied. Since MATLAB was designed as a mathematical analysis tool in
general, data anywhere in a network is easily accessible for viewing and
further manipulation. This means the data is available for analysis utilities
like interpolation, statistical analysis, equation solvers, optimization
routines, and any of the other powerful MATLAB functions. A system
analyst can plot the training error function, watch the change in the weight
matrix, and get real-time network outputs to verify their correctness. The
toolbox can be used in both MATLAB and Simulink.

MATLAB Simulink and Neural Network Toolbox provide
comprehensive support for many proven neural network paradigms, as well
as a graphical interface that allows design and management of neural
networks. The Neural Network Toolbox simplifies the creation of
customized functions and neural networks. It has a GUI for creating,
training, and simulating neural networks and has visualization functions for
viewing performance.

One feature of MATLAB Simulink is the automatic generation of neural
network simulation blocks. In Fig. 7-11, a three-layer neural network has
been converted into Simulink blocks indicating its structure. This tool can
be used in the design activity to achieve a detailed design for the software
component.

Another visualization capability offered by this tool is the ability to
model control system applications. Neural networks have been applied to
the identification and control of nonlinear systems. The Neural Network
Toolbox includes descriptions, demonstrations, and Simulink blocks for
popular control applications: model predictive control, feedback
linearization, and model reference adaptive control.

http://www.mathworks.com/products/neuralnet/

174 Chapter 7

nCtttcadvftmvard/NmirftI Network
f_. ;• - j i : : • -

0 î yd i

, ;c |x i

O
«C3h

•11}

aI2)

I .i.<,»^ .'•

il
L.ii.r.

CaBcoderorword/Neural NelwofK/Li

WetK^

1̂5 ra a

iimulpihcT

0—^0—K^^
0—*{g—4^
•ill firiv.- l'-''"!-̂ *

1 iw
b 2!

1 'ttn
\ tu

^rz]

1

- » A

Rc*dr' 100^ odeiS

Figure 7-11. A Three-Layer Neural Network Converted into Simulink Blocks
(Reproduced courtesy of The Mathworks)

For testing activities, a Simulink model that includes the neural network
control block and plant model could be used. The example below shows a
model for predictive control of a continuous stirred tank reactor (CSTR). In
Fig. 7-12, the upper left window shows the CSTR plant model that includes
a neural network block. The other windows allow one to visualize
validation data (top right), to manage the neural network control block
(lower left), and the plant identification (lower right). These visualization
features of Simulink could enhance the integration testing activities.

Neural Network Visualization Techniques 175

Figure 7-12. Simulink Model that Includes the Neural Network
(Reproduced courtesy of The Mathworks)

3.2 BrainMaker by California Scientific Software

BrainMaker Neural Network Software"* has application to areas such as
business and marketing forecasting, stock, bond, commodity, and futures
prediction, pattern recognition, and medical diagnosis. No special
programming or computer skills are necessary to use the software. All that
is needed is a PC or Mac and sample data to build a neural network.

BrainMaker offers a GUI that allows some analysis of the neural
network. After the network is trained, you can switch the display over to
show numeric values, allowing you to edit the exact value of the inputs
directly on the screen. The network instantly runs your new numbers and
predicts an output.

BrainMaker has extremely flexible input and display formats. Below in
Fig. 7-13 BrainMaker is learning optical character recognition. The input is
a graphic picture of the number nine; the network is indicating with its
output that the probability is very high that this is a picture of a nine, and
very low that this is a picture of any other digit.

http://www.calsci.com/

176 Chapter 7

10 BraiiiMdcer PnrfeMkmal [Oigil«.iteq
|M5 Fie £dit Operate Paiameters £onnectiom display Snal̂ >2e

1 Waiting 00:00:06 Facts: Digits.def
c t : 10 T o t a l : 730 Bad: 0 Las t : 1

Learn: 1.6
Good: 10

90 Tolerance: 0 .100
Last : 9 Run: 73

Ne
pattern:
output:

0123456789 =n

U
Input

Network Progre mmu

i
0.000

G.50Q 1.0QQ

boo

DOO x̂
Runs 1 to 200 shown

500 Input- Hidden Connections

I I 1 I I I 1 i l l l l l i l 1 1 I I i l
-8-0 0.0 8.0

1QQ Hidden - Output Connections

-llilL
I • • • • • « !

-8.0 Q.O 8.0

Figure 7-13. BrainMaker

Also, shown in Fig. 7-13 are two of BrainMaker Professional's graphs:
the network progress display, which shows us graphically how the average
error has declined over the course of training, and the connection
histograms, which indicate to us how much of the network's capacity is
being used. The histogram display shows us if the network has too many
neurons (good memorization, poor generalization), too few neurons (not
enough capacity to learn this problem) or just right (optimum generalizing).

BrainMaker also includes the following analysis tools:

Sensitivity Analysis to show which inputs determined results
Neuron Sensitivity to show the total effect of one input on results
Global Network Analysis reports how your network reacts to all facts
overall
Contour Analysis shows color peaks and valleys of response to pairs of
inputs
Data Correlator finds important data and optimum time delays
Error Statistics Report to check network error rate during training

Neural Network Visualization Techniques 111

7. Print or Edit Weight Matrices to examine and customize network
internals

8. Genetic Training Option to train variations of the design and shows
which was the best

3.3 NeuroShell® 2 by Ward Systems Group

NeuroShell® 2 combines neural network architectures, an icon driven
user interface, utilities, and options to give users a neural network
experimental environment. It is recommended for academic users, or those
users who are concerned with classic neural network paradigms like back-
propagation. Users interested in solving real problems should consider other
Ward Systems Products^ such as NeuroShell Predictor, NeuroShell
Classifier, or the NeuroShell Trader.

NeuroShell 2 includes graphics utilities such as line charts, bar charts,
scatter plots and high- low-close graphs. Options allow the user to add 3-D
effects and change colors or types of graphs. These graphics facilities
enable the user to look for patterns in the data

Before and after network processing, the Variable Graphs module may be
used to create different types of graphs:

1. Graph Variable(s) Across All Patterns - graph different types of
variables, such as advertising expenditures and cost of goods sold, across
all patterns in a file. This graph is also used for graphing time series
data.

2. Graph Variable Sets in a Pattern - this graph can be used to examine data
if all of the variables in a pattern are of the same type, e.g., 100 points in
a physiological signal such as an electrocardiogram.

3. Correlation Scatter Plot - this graph is a scatter plot of one variable
against another through all patterns. The linear correlation coefficient is
computed for each graph.

4. High-Low-Close Graph - this graph allows the user to select variables
from the data file that are displayed as the high, low, and close values of
a stock price. The graph reveals trends in the user's data.

5. Training Graphs - NeuroShell 2 allows the user to display graphs of
training set/test set errors while training back-propagation networks.
When training Kohonen networks, the user can display a graph of
category distributions in either a bar or pie chart. The Probabilistic
Neural Networks and General Regression Neural Networks Learning

5 http://wardsvstems.com

178 Chapter 7

Modules allow the user to display a smoothing factor optimization graph.
GMDH nets graph the criterion value for the created formula against the
layer number.

The graph below in Fig. 7-14 shows an example of a graph generated by
NeuroShell 2 that could be used to look for patterns in the data.

m?U!l JUiiUMBIiJÎ l̂lHb ^
File Edit Graph Options Help

Variables Thru Patterns

Vail ue

1 2 3 - 1 5

Pattem Number

3.4

Figure 7-14. NeuroShell 2 Graph

NeuroShell® Predictor

I V4lTlM.lt?E=3

This product is used for forecasting and estimating numeric amounts
such as sales, prices, workload, level, cost, scores, speed, capacity, etc.
NeuroShell® Predictor is a simple step-by-step process that uses recognized
forecasting methods to look for future trends in the user's existing data. It
contains the both neural network and statistical prediction algorithms.

Figures below show two different graphical representations that allow the
user to gain insight into the neural network. Fig. 7-15 shows the network
training status, giving information on network performance, hidden neurons

Neural Network Visualization Techniques 179

and a graph of actual vs. predicted values. Fig. 7-16 shows the estimated
relative importance of each variable in the model.

File View Nelwoik Qpliom be)p

Network training status. Training strategy: neural.
^ StattiUcs Graphic Screen"

Figure 7-15. NeuroShell Predictor Training Status

NetJiaiH

NHitWo todirunoiMDgiets Bei l ftet i t ^ i i t i c i Import^ncg ^ inputt

ncuons Ifwicd: | IB

I lotal h«*<fcn ftcuioot: | 14

6 r « h i c « S M u s

r A C I M I vt

pcediclcfd
r Loafrmg

! D
%

RcliUnc Ijupniimicc of Iiiini(>

_• -
H P , nf S|»ecJ«il I v ^ i i K

S*4tcWiWtt 74 {^oml to24i

Figure 7-16. NeuroShell Predictor Relative Importance

180

3.5 Cortex Pro by Michael Reiss

Chapter 7

Cortex-Pro^ is a specialized environment for the development and
simulation of neural networks. Cortex-Pro can handle a variety of neural
network types.

When a network is built in Cortex-Pro, it is automatically displayed on
the screen. The user can define the characteristics of the display. For
example, size, gray scales, numbers, or other attributes can represent the
activities or outputs of nodes.

The Cortex-Pro language has general graphics commands for creating
pictures and diagrams associated with the user's networks. By using
commands in the Cortex-Pro language, the user can plot graphs of the user's
network data. General graphics capabilities allow the user to draw complex
pictures in special "graphics windows".

Some examples of screen displays from various applications are included
in Fig. 7-17, Fig. 7-18 and Fig. 7-19.

Figure 7-17. Cortex Pro Screen Shot

www, rei ss. demon. co. uk/webctx/intro .html

Neural Network Visualization Techniques 181

and tes t data.

Figure 7-18. Cortex Pro Screen Shot

nou you could try re-learning uitii a different learnrate/nonentun
or a different nunber of hidden nodes. Or you could change the
training set to any of "AMD", "OR** or "XOR".

Note: the uelghts uill autonatically be randonised at tiie start
of learning.

Figure 7-19. Cortex Pro Screen Shot

182 Chapter 7

.TM 3.6 Partek Predict by Paratek Incorporated

Paratek^ provides software and services for data analysis and modeling.
These tools provide a combination of statistical analysis and modeling
techniques and modern tools such as neural networks, fuzzy logic, genetic
algorithms, and data visualization. Partek Predict^^ is an advanced toolkit
for Predictive Modeling, This software package includes a trainable
Multilayer Perceptron neural network.

Fig. 7-20 on the next page is an example of the graphical interface
depicting the numerically selected structural properties that are predictive of
drug activity. A neural network was used to build a predictive model.
Selecting a point with the mouse displays the corresponding compound. The
screen display shows the visual tools available.

£iB E * yew I« SW t » « Sei«« loJs Cwton B * I

Di^ay I njiftk^ s: I ;^n i tBT.it-1 f p
lie £i« ^ntv

.Pisii

2:tHtA I 3Hd»cti»M*j 4Mdto

I 33& ! 384 28 I 33E.$44

J:\ J , Ji4 H<

B0»*i as Oatr m l T T T "

— J '
,M

(jxiipntmiK (ciiorpd by dbsorptk^t, W*HJ \rf OMSS)

J r Od"
^JOJiSl

Figure 7-20. Partek Predict Screen Shot

' http://www.partek.com/

Neural Network Visualization Techniques 183

3,7 havBpNet++, havFmNet++, and havBpNet:J by
hav.Software

havBpNet++ and havBpNetJ by hav.Software^ are, respectively, C++
and Java class libraries that implement feed-forward, simple recurrent
(sequential), and random-ordered recurrent nets trained by back-propagation
and can be used for both stand-alone and embedded network training and
consultation applications.

havFmNet++ and havFmNetJ are, respectively, C++ and Java class
libraries which implement Self-Organizing Feature Map nets. Map-layers
may be from one to any dimension. havFmNet may be used for both stand­
alone and embedded network training and consultation applications.

havETT is a simple demo program written in Visual Basic which uses the
DLL version of the havBpNet++ library to allow a user to define, train, save,
restore and consult a simple 3 layer network with optional use of recurrent
layers.

In havBpETT, the main screen in Fig. 7-21, which can be found on the
following page, presents both a toolbar and an information display. The
toolbar may be used to select overall actions (such as data or network
control). Both buttons and menu items are provided for all main actions.
The information display presents a summary of certain layer and network
parameters. Also provided is an information display line in which messages
will appear as the cursor is placed on various buttons and fields.

havDuETT - vcr. 2.1 W I P - AJpha-1
Mctwork Uala Procc5t> Qptjpns Lxit

EE
Molepad | » s « 2 | ll«et:i

. rtc.-w \\%f.i anri M.-iil B i i»ony d m B ^ lit-j^^i
Xefyvork Pes crip fiort N r t w m k l rrnr

Funct ion
tni l i . i i HnmjrronI
Vcaiue Strength

Figure 7-21. Network Description Screen

The Network Control screen in Fig. 7-22 is used to describe the overall
network's configuration. Connections between layers are enabled/disabled

' http://www.hav.com/

184 Chapter 7

by clicking on the connectors located under a layer. Inactive connections are
dashed light-gray lines. Active connections are color coded according to
their type: Forward, Weighted-Copy Recurrent and Random-Order
Recurrent. Layer parameters are entered for each layer individually. A layer
is selected by clicking on that layer.

B 1 II 1 1 B

^HHiJ^H

^ O U T P U T _ ^ H

^ INPUT ^ H ̂ ^^1 \\ UutMJl H

^^^^^•u^^^H

Menmenrk Ckmirai yt^

tMt 1

2 Output F—dtowPid

jie«lr«i.t)y CieUip V
wndwttwU

MO er*wed «» pa* <rf <hp
'•(.Ul l«

Figure 7-22. Network Control Screen

The Layer Description screen in Fig. 7-23 allows the user to set various
layer parameter values.

When a layer button in the Network Control screen is cHcked, a sub-
screen is opened that allows the user to set/select the values of various
parameters associated with the layer. Examples of these parameters are
layer-size, learning-rate (Beta), momentum (Mu), etc.

By selecting the Accept button, the current parameter values are
communicated to the system.

From the Training Control screen, the training can be started or stopped.
The error-mode can be controlled to specify that the network should be
saved to disk each time the network's performance is better than it has yet
been. On the training window, selecting the appropriate items can make
changes to certain network and layer parameters.

Both a digital and graphical display of network performance is presented
toward the bottom of the Training Control window. A graph will show the
percent-error and may be turned on or off as desired. Turning the graph off
will noticeably increase training speed for smaller nets with relatively small
training-data sets. When the graph is off, it is still updated for use at a later
time if desired.

Neural Network Visualization Techniques 185

Figure 7-23. Layer Description Screen

4. USEFULNESS OF VISUALIZATION

Visualization techniques can be evaluated in a variety of ways. Many
books and articles have dealt with visualization issues from web page design
to scientific visualization. The criteria in Table 7-1 can provide a means to
evaluate a specific visualization technique or software application to
determine whether it provides useful visual information. Freitas [2002] in a
paper titled "On Evaluating Information Visualization Techniques" outlines
four classes of criteria for testing usability of visual representations. The
four classes are completeness, spatial organization, codification of
information, and state transition. Other authors use similar criteria and
classification schemes.

4.1 Visualization Techniques Used Across the
Development Process

Many visual techniques can assist V&V in the Development Process for
neural network software. Development V&V activities, such as concept
(selecting architecture), requirements (defining functional and performance
requirements), design (designing for software component and training of the
neural network), implementation (transforming design into executable

186 Chapter 7

Table 7-1. Criteria for Evaluating Visual Techniques [Freitas 2002]
Criteria Description Affected By
Completeness

Spatial Organization

Codification of
Information

Changes in Spatial
Organization

All the semantic content of the data
is displayed

Overall layout of visual
representation;
Ease of locating information on the
screen;
Overall distribution of information
elements in the representation
Mapping of data elements to visual
elements;
Use of additional symbols or
realistic characteristics used for
building alternative representation
Rebuilding the visual representation
after a user action

Geometric or visual
constraints;
Cognitive complexity
Presentation of context while
displaying a specific element
in detail

Perception of the user

Processing speed;
Complexity of the visual
display

representations), and testing (software testing and simulation), may be
addressed through the use of visualization tools. Many of the examples
provided below are related to the neural networks used by the Intelligent
Flight Control System (IPCS) project (see Foreword for a description of this
project).

4.1.1 Concept Activity

In the concept stage, a neural network developer will select an
architecture for the neural network. Visualization can explain the design
structure (see Fig. 7-24). Diagrams of the intended neural network
architecture should be part of the documentation produced by the
development process. Examples of such diagrams are given throughout
Chapter 4.

4.1.2 Requirements Activity

Defining functional and performance requirement can be difficult for a
neural network system. The DCS used by the IFCS project had to be
reverse-engineered from two different sets of code, one in MATLAB and
one written in C. This process became very confusing until diagrams of the
DCS were introduced. A model of the DCS was built in MATLAB using
the knowledge of the structure of the DCS, how the nodes evolved over
time, and what connections meant. The DCS structure was then plotted
across time and these plots were assembled into a movie (see Fig. 7-25 on

Neural Network Visualization Techniques 187

V W

Figure 7-24. Feed-forward Neural Network Architecture

the next page). The movie was used at an early project-wide meeting to give
the project team, who had limited knowledge of neural networks, a basic
understanding of how the DCS works and adapts. This movie proved to be
an excellent visual tool to promote understanding and help the project gain
support. It was very useful in explaining to the participants of the team,
especially managers, the workings of the DCS and how it would evolve over
time. Now the project was at a point where the technical people had more
understanding about the DCS (SOMs in general) and how it worked, and this
in turn led the group to develop better requirements for the project.

4.1.3 Design Activity

Visualization can also play an important role in improving a system
designer's supervision of neural network adaptation during training.
Typically, training a neural network is an automated routine: collect training
data, process training data, set up an automated function for training, check
for errors, modify the neural network to some prior chosen method, and

188 Chapter 7

1̂1
• 1

1

H

Jv^^

Wmmm<s> - X J

1 » ; d ; i 1

1

- • - • -^ ^ ^ • • • • y . i i M \

Figure 7-25. DCS Movie

repeat. The designer can leave the system unattended and return when it is
done learning. However, this may be inadequate supervision because the
developer may not be sure of what the network learned. A visual interface,
such as the one provided by MATLAB or a custom one created by the
developer, could improve the supervision of the learning and lead to
increased confidence in the system.

Other visualization techniques present the neural network knowledge
after it has been trained. These techniques are especially useful when
examining neural networks, such as a SOM, that may change structure by
growing new nodes as it learns. One example of a technique that applies to
the DCS, a type of SOM, is representing the trained neural network using a
Voronoi Diagram^ (see Fig. 7-26).

The neural network may have actually learned a violation of the expected
operation and this could be determined by examining a visual representation
of what has been learned. For this purpose, visual techniques such as a
Voronoi plot of a trained DCS, Fig. 7-27 on the following page, can be very
useful. This type of diagram allows for the examination of how the regions
are forming around the centroids to look for anomalies that may need
explanation. This technique can be used when the input space is two- or
three-dimensional, or it used by restricting a larger dimensional space to two
or three dimensions at a time.

' Given a set ofn points in the plane, a Voronoi partition is a collection of AZ convex polygons
such that each polygon contains exactly one point as its centroid and every point in a given
polygon is closer to its centoid than to any other of the n-1 points.

Neural Network Visualization Techniques 189

Dynamic Cell Structure (DCS)

^Representation of each region

closest representation or output

For each input find the closest representation
and it becomes the output

Weights are the positions of the outputs
Pruning removes edges when region no longer exists

Figure 7-26. Voronoi Diagram representing the DCS [Mackall 2002]

0 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 7-27. Diagram of a trained DCS

190 Chapter 7

Other visual representations of knowledge can be used along with rule
extraction results (see Chapter 8). The knowledge extracted from the trained
neural network in the form of rules can then be displayed in plots and
compared against domain requirements (Chapter 8, Section 2.2). An
example of such a plot is below in Fig. 7-28.

Rule Boundaries for Ci

- C e l l
• Ce l2

ee l 3

Figure 7-28. Visualization of Rule Antecedents for Trained DCS Network

4.1.4 Implementation Activity

MATLAB Neural Network Toolbox and Simulink can be used in the
implementation activity. The Neural Network Toolbox simplifies the
creation of customized functions and neural networks. Simulink can be used
to achieve a detailed visual design for the software component and then the
design can be transformed into executable representations using the
autocode generation feature of the software. One feature of MATLAB
Simulink is the automatic generation of neural network simulation blocks.
In Fig. 7-29, a three-layer neural network has been converted into Simulink
blocks indicating its structure.

4.1.5 Testing Activity

Testing is another process activity where visualization proves useful.
Neural networks are often tested as a black box, but there are many visual
techniques that would allow white box testing of neural network software by
the developers or V&V practitioners. The capabilities of MATLAB's
Neural Network Toolbox demonstrate some of these techniques that give

Neural Network Visualization Techniques 191

f,- Ld' i.'-« i:o./*(m f-.-rniat TfloU Utip

DciiUtii » 0 « ^ « » < r̂ ^̂

i . icixi

3

'i.'MI>'[!lHni!?<BBg

Figure 7-29. A Three-Layer Neural Network Converted into Simulink Blocks

visual examination to the internal workings of the neural networks learning
process [Mathworks 1998]. For the IPCS project, several plotting scripts
were developed in MATLAB to look at the various results from the DCS
(both in simulation and from a C version) to determine if it was working
correctly. These scripts are still being used by the IPCS project today.

Visualization capability offered by MATLAB Simulink can enhance the
integration testing activities. Simulink has the ability to model control
system applications. For testing activities, a Simulink model that includes
the neural network control block system model could be used. The Neural
Network Toolbox includes descriptions, demonstrations, and Simulink
blocks for popular control applications.

Other low-fidelity visual tools can include off-the-shelf graphical
packages or original software developed for a specific purpose. The neural
network developer or V&V practitioner could use graphical packages or
create specialized tools specific to the individual situation for visualization
of various aspects of the neural network operation. Greg Limes'^ a NASA
Ames Research Center (ARC) subcontractor working on the IPCS project,
developed one such tool to watch the DCS adapt during training.

The WVU P-15 Simulator (Pig. 7-30) provides a 3D representation of an
aircraft that can be used for testing a system that contains a neural network.
This simulation developed for the IPCS project offers different viewing
points, external and internal, to the vehicle [Perhinschi 2002]. It presents the

Limes, Greg. Personal interaction with Brian Taylor on IPCS Project, 2001.

192 Chapter 7

traditional pilot instrumentation overlaid on the flying aircraft. Real-time
MATLAB plots are generated during the flight and are displayed on the
screen or stored on the hard drive for later analysis. The plots are user-
selected and show various values including sensor data, error tracking of the
research components, and pilot input. This tracking can help assess the
performance of the neural network in a simulated environment before it is
deployed into operation.

-^

Figure 7-30. WVU F-15 Simulator

4.2 Visualization During the Operation Process

For an on-line learning neural network (OLNN), one that adapts during
operation, visualization can provide a means by which to examine the neural
networks inclination towards a certain direction of adaptation. If the
direction of adaptation is incorrect, then the designer can remedy the
situation before the OLNN is deployed or a monitoring device may be able
to predict incorrect adaptation before it causes failure. An OLNN may, over
time, begin to exhibit learning patterns that are considered unacceptable.
Visual tools and techniques can be useful in examining these patterns so the
neural network can be redesigned or reset to a previous state to prevent
future occurrences of unacceptable behavior.

Two tools have been created for the IPCS project for the purpose of
monitoring the OLNN performance. One is the Sensitivity Tool created by
Soares [2002] for the NASA Dryden Flight Center and the other is the
Confidence Tool created by Gupta and Schumann [2004] at NASA Ames
Research Center.

The Sensitivity Tool [Soares 2002] applies Lyapunov's 2"̂ Method for
the stability analysis of neural network-based flight control systems that
guarantees the boundedness of the tracking error and network weights. The

Neural Network Visualization Techniques 193

Sensitivity Tool is used to determine whether the neural network-based
flight control system model signals remain bounded and to exercise the gain
sensitivity to determine changes to the weights and inversion errors while
adding white noise to the adaptation algorithm.

The Tool is a GUI interface (Fig. 7-31 on the next page) to
MATLAB/Simulink models that allows the user to vary gain and noise
parameters and generate plots of desired variables. The plots include:

1. The trajectories of the neural network weights, as they remain bounded
and converge to the desired value

2. The trajectories of the pitch, roll, and yaw rates, showing their stability
and boundedness

3. The weights of the three channels versus time
4. Neural network estimation of the inversion errors
5. Error between the inversion error and the adaptive neural network

The Sensitivity Tool was modeled in Simulink. The GUI is modeled in
MATLAB and can be used to plot the results. The tool includes time history
plots of the weights and cross plotting of variables that show the
boundedness of the weights and the tracking error for roll, pitch, and yaw
channels, in addition to the neural network estimation for the inversion
errors. Additional capability of the tool includes adding gains
(perturbations) on selected gain parameters.

Fig. 7-32 shows the Noise Analysis interface (one of the features
offered). The Noise Analysis introduces a Band-Limited White Noise to the
error rates in each channel. By double clicking on the Noise option, the user
can change the noise characteristics, and then plot the result in the presence
of noise. This demonstrates how the cancellation of inversion errors changes
with the addition of white noise. Individual random noise based on the
system clock is input into each channel, two (2) per roll, pitch, and yaw axes
respectively, with one representing the proportional and integral controller
each.

Another tool that can be used to support the operation activity is the
Confidence Tool created by Gupta and Schumann [2004] at NASA ARC.
The tool was developed to measure the performance of the neural network
during operation by calculating a confidence interval (error bar) around the
neural network's output. The tool can be used during pre-deployment
verification as well as during operation to monitor the network performance.
The tool has been implemented in Simulink.

194 Chapter 7

Neural Network Tool Analysis
Study of the effectiveness of the Lyapunov

function and associated parameters

To setup Gain and/or Noise sensitivity,
I Double click each icon below then follow the instructions.

r Hsip Qa\u
Help noise

¥ 1
B a rtd-l_tmi-ted

j H«lp gain+notse I

I Gain Analysis |

l»
Band-Limited White

Noise Analysis
Gain plus Band-Limited
Wiiite Noise Analysis

Help Reset R^^e-t to Nomi f ia l case]
I Double Click to reset the Gain and Noise Analysis | [Close ALL Plots |

Figure 7-31. GUI for the Sensitivity Tool [Soares 2002]

I DcubiG below click for po«t->Oaln, Nol«e Analysis plots |

|Trni»ctorv prot« ef p.<| a n d T l jNN m d Pyn Inv Output i j

H«tp NN «««l«hb I H*lp HH W t Eti»t I

• - ^ ^ S -

I H*tp »»<ljM»faO«<t»<y"|

....<q;3 I
|NN WatghtTI | W i g h t »d*pt«MQn arror p lo t« l iTr^^ctory plots of ttia NN w t g h f |

Figure 7-32. Additional Plots (Gain and/or Noise Analysis) [Soares 2002]

Fig. 7-33, Fig. 7-34, and Fig. 7-35 show a graphical representation of the
tool's output for three simulation runs for three different operating
conditions. In each graph, the output of the neural network over time is
shown as a solid line and the dashed lines show the error bars (variance). A
broad band corresponds to a low confidence value.

Neural Network Visualization Techniques 195

Goniidinct inttrval on U_j

Figure 7-33. Confidence Tool (a) [Gupta 2004] (©2004 IEEE)

GDfilidinc* irttfvai on U ^

Figure 7-34. Confidence Tool (b) [Gupta 2004] (©2004 IEEE)

196 Chapter 7

confJEtenc* int«ivalon U^

tims[s]

Figure 7-35. Confidence Tool (c) [Gupta 2004] (©2004 IEEE)

5. SUMMARY

Visualization can help bridge the cognitive gap by representing
relationships in the neural and by examining how those relationships evolve.
Two-dimensional diagrams, three-dimensional plots, or even 3D simulations
can be used to visually compare structures and adaptation of the neural
networks. These activities can be used as V&V activities to assess the
constraints or limitations of the proposed neural network architecture.

Visualization can aid in both developing and understanding systems
involving neural networks. Personnel involved in verifying and validating
such systems may have little or no knowledge of the workings of a neural
network. Through the use of visualization techniques, such as simple neuron
models, the MATLAB Neural Network Toolbox and Simulink, or even 3D
visualizations, the understanding can be increased.

REFERENCES

Craven, Mark W. and Jude W. Shavlik. 1992. Visualizing Learning and Computation in
Artificial Neural Networks. InternationalJoumal on Artificial Intelligence Tools 1 3:399-
425.

Freitas, Carla M.D.S., Paulo R.G. Luzzardi, Ricardo A. Cava, Marco Winckler, Marcelo S.
Pimenta, Luciana P. Nedel. 2002. On Evaluating Information Visualization Techniques.
In Proceeding of Advanced Visual Interfaces. Trento, Italy, May.

Neural Network Visualization Techniques 197

Gupta, Pramod and Johann Schumann. 2004. A Tool for Verification and Validation of
Neural Network Based Adaptive Controllers for High Assurance Systems. In Proceeding
of High Assurance Systems Engineering (HASE). Tampa, FL. April 2004. 277-278.

Hinton, G.E., McClelland, J.L., and Rumelhart, D.E. 1986. Distributed representations. In
Parallel Distributed Processing: Explorations in the Micro structure of Cognition, eds.
D.E. Rumelhart and J.L. McClelland. Cambridge: MIT Press. 77-109.

Mackall, Dale; Stacy Nelson; and Johann Schumman. 2002. Verification and Validation of
Neural Networks for Aerospace Systems. NASA Dryden Flight Research Center and
NASA Ames Research Center. June 12.

Mathworks, Inc. 1998. Neural Network User's Guide (version 3).
Munro, P. 1991. Visualization of 2-D Hidden Unit Space. Technical Report LIS035/IS91003,

School of Library and Information Science, University of Pittsburgh, Pittsburgh, PA.
Perhinschi, M. G., G. Campa, M. R. Napolitano, M . Lando, L. Massotti, and M.L. Fravolini.

2002. Modeling and simulation of a fault tolerant flight control system. Submitted to
InternationalJournal of Modeling and Simulation in April 2002.

Pratt, L.Y. and Mostwo, J. 1991. Direct Transfer of Learned Information Among Neural
Networks. In Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, CA. 584-589.

Pratt, L. Y., and Nicodemus, S. 1993. Case Studies in the Use of a Hyperplane Animator for
Neural Network Research. In Proceedings of the IEEE International Conference on
Neural Networks, IEEE World Congress on Computational Intelligence, 1:78-83.

Soares, Fola. 2002. Users Manual for the Generic Analysis Tool of Neural Network-Based
Flight Control systems. Hypersonic Vehicles, Adaptive controllers, and Lyapunov
Techniques.

Towell, G.G., Shavlik, J.W., and Noordewier, M.O. 1990. Refinement of Approximately
Correct Domain Theories by Knowledge-Based Neural Networks. In Proceedings of the
Eighth National Conference on Artificial Intelligence. Boston, MA: MIT Press. 861-866.

Towell, G.G., M.W. Craven, and J.W. Shavlik. 1991. Constructive Induction in Knowledge-
Based Neural Networks. In Machine Learning: Proceedings of the Seventh International
Workshop. Evanston, IL. Morgan Kaufmann. 213-217.

Vesanto J. 1998. http://www.cis.hut.fiHuuso/vrmlsom/index.html.
Vesanto J. 1999. SOM-Based Visualization Methods. Intelligent Data Analysis. 3:111-126.
Wejchert, J., and Tesauro, G. 1990. Neural Network Visualization. In Advances in Neural

Information Processing Systems, Vol. 2, 465-472. San Mateo, CA.: Morgan Kauftnann.

Chapter 8

RULE EXTRACTION AS A FORMAL METHOD

Marjorie Darrah, Brian J. Taylor
Institute for Scientific Research, Inc.

1. INTRODUCTION

The term formal methods refers to the use of techniques from formal
logic and discrete math in the specification, design, and construction of
computer systems and software. These techniques enable the formalization
of software for development and testing so that it may be verified and
validated in a more thorough way. When used for testing purposes, formal
methods can reduce the reliance on human intuition and judgment by
providing more objective and repeatable tests. Traditional formal methods
techniques include model checking and theorem proving.

In the case of deterministic software, model checking can provide
significant help for designing more efficient and reliable systems. Model
checking starts from an initial state and repeatedly applies the transition
relation to search all reachable states for a property violation, while
remembering explored states to avoid looping [Pecheur 2000]. In theory,
when this technique is applied to standard deterministic software, a thorough
check of the state space may be accomplished, though in practice it may take
a very long time.

Theorem proving is the use of logical induction over the execution steps
of the program to prove system requirements. System requirements are
translated into complex mathematical equations and solved by verification
experts to prove the system is accurate [Pecheur 2002]. This technique can
use the full power of mathematical logic to analyze and prove properties of
any design but will require significant effort and expertise.

This chapter explores the idea of applying formal methods to adaptive
neural network software in order to make the verification and validation

200 Chapter 8

(V&V) process more objective. Both model checking and theorem proving
were investigated to decide whether these techniques could be applied to
adaptive neural networks.

Model checking seems less applicable when the state space is infinite or
when the system is non-deterministic or adaptive. In "Verifying Properties
of Neural Networks" [Rodrigues 2001], the idea of using model checking to
verify properties of recurrent neural networks is discussed. The system
presented in the paper, by the author's own conclusion, was clearly
undecidable and therefore could not be automated. A finite version of the
system was addressed using local model checking and was implemented, but
Rodrigues fails to generalize these results to the infinite system. In current
literature, no other research was found that applied model checking to neural
networks. It is most likely that because of the infinite state space of the
neural network, and the adaptive nature of some neural networks, model
checking does not directly apply. Additionally, much more work in this
research area will need to be done in order to make it a viable method for the
V&V of neural networks.

Likewise, theorem proving in the traditional sense does not seem to be
applied to adaptive neural networks. Rather than the traditional approach
where the proof of requirements is done by logical induction over the
structure of the program, the approaches for the adaptive neural networks
deal with proving convergence and stability. Lyapunov or stochastic
methods are commonly used and take the place of theorem proving for
neural networks.

Although not specifically identified in the literature as a V&V formal
method technique, rule extraction fits the basic definition by using
techniques from formal logic to formalize neural network software so that it
may be examined more completely. There are many researchers
investigating the use of rule extraction to acquire knowledge from the neural
network and put it in a form that a human can understand and examine. In
the past, rule extraction has been applied to various types of neural networks
including multilayer perceptron (MLP), local cluster, and radial basis
function [Andrews 1995; Andrews 2002; McGarry 1999]. This chapter
examines whether rule extraction can be used as an effective tool for the
V&V of neural networks and specifically can it be applied to the dynamic
cell structure (DCS) neural network.

Rule Extraction as a Formal Method 201

2. OVERVIEW OF NEURAL NETWORK RULE
EXTRACTION TECHNIQUES

The internal knowledge of a neural network cannot be understood by
examining the source code of the software. By design, neural networks
change while training on a data set. After training, some networks are fixed
while others are allowed to adapt during operation. It is a challenge to
understand how the network will handle additional input. Testing can give
some level of confidence but may not provide a satisfactory level in safety-
or mission-critical cases. Other formal methods, such as model checking, do
not apply in the case of neural networks.

The method of rule extraction can been used to model the knowledge that
the neural network has gained while training or adapting. The rules will give
insight into the workings of the neural network and may also be used to
check against basic system requirements. The rules extracted are generally
represented by a set of if-then statements that may be examined by a human.
If the neural network is fixed after training, then the rules should, with some
confidence, model the way the neural network will handle other data that is
processed. If the neural network is a real-time adaptive neural network, then
rule extraction can be done for one point in time to establish what the system
looks like at that instance. Repeated application of rule extraction could
yield an understanding of the progression of the network during adaptation.

In the current literature pertaining to rule extraction, two main survey
papers give a good foundation for the study of this topic. The first is from
the Neurocomputing Research Centre titled "A survey and critique of
techniques for extracting rules from trained artificial neural networks"
[Andrews 1995a]. The second survey paper was produced by the same
group several years later titled "The truth is in there: directions and
challenges in extracting rules from trained artificial neural networks" [Tickle
1998]. For a more detailed literature review of rule extraction please refer to
"Toward Reliable Neural Network Software for The Development of
Methodologies for the Independent Verification and Validation of Neural
Networks" [ISR 2002].

Rule Formats
Rule extraction algorithms will generate rules of either conjunctive form

or subset selection form, commonly referred to as M-of-N rules named for

202 Chapter 8

the primary rule extraction that makes use of the form. All rules follow the
English syntactical if-then propositional form. Conjunctive rules follow the
format:

IF (condition 1) AND... AND (contition N)

THEN RESULT

Here the RESULT can be of a binary value (TRUE/FALSE or YES/NO),
a classification value (RED/WHITE/BLUE), or a real number value (0.18).

The condition can be either discrete (flower is RED, ORANGE or
YELLOW) or continuous (0.25 < diameter >0.6). The rule extraction
algorithm will search through the structure of the network, and/or the
contents of a network's training data, and narrow down values across each
input looking for the antecedents (conditions) that make up the rules.

Subset rules, or M-of-N rules, follow the format:

IF (M of the following N antecedents are TRUE)

THEN RESULT

Cravin and Shavlik explain that the M-of-N rule format provide more
concise rule sets in contrast to the potentially lengthy conjunctive rule
format [Craven 1994]. This can be especially true when a network uses
several input parameters.

Rule Extraction Techniques
Andrews [1995a] identifies three categories for rule extraction

procedures: decompositional, pedagogical, and eclectic. Each approach may
generate Boolean or fuzzy-logic rules. There are several dozen different rule
extraction techniques; many are no more than a succeeding version of a
previous technique. The techniques that appear prominently in the literature
will be discussed below. Other techniques, such as fuzzy logic and Boolean
rule extraction, discussed in Andrews' survey paper, do not seem to be
widely used or are not well documented, as judged by the lack of
information in the literature.

Decompositional
Decompositional rule extraction involves the extraction of rules from a

network in a neuron-by-neuron series of steps. This process can be tedious
and result in large and complex descriptions. The drawbacks to
decompositional extractions are time and computational limitations. One
advantage of decompositional techniques is that they do seem to offer the

Rule Extraction as a Formal Method 203

prospect of generating a complete set of rules for the neural network. These
rules are also of a binary form; the outputs of the neurons are mapped into a
yes/no condition that Andrews refers to as a rule consequent [Andrews
1995a].

KT and SUBSET are two well-known subset algorithms within
decompositional rule extraction. Fu [1994] developed the KT algorithm that
is able to handle neural networks with a smooth activation function, such as
the back-propagation network with a sigmoid function, where the activation
function is bounded in the region of [0, 1]. The SUBSET algorithm is an
extension of the KT algorithm that was suggested by Towell and Shavlik
[1993]. The SUBSET routine specifies a neural network where the output of
each neuron in the network is either close to zero or close to one, as opposed
to existing somewhere between the bounds of zero and one. This changes
the importance of links between neurons in that the values that propagate on
a link are close to the value of that link's weights or zero.

Pedagogical
Pedagogical rule extraction is the extraction of a network description by

treating the entire network as a black box. In this approach, inputs and
outputs are matched to each other. The decompositional approaches can
produce intermediary rules that are defined for internal connections of a
network, possibly between the input layer and the first hidden layer.
Pedagogical approaches usually do not result in these intermediary terms.
Pedagogical approaches can be faster than the decompositional, but they are
somewhat less likely to accurately capture all of the valid rules describing a
network's contents.

Thrun [1995] developed Validity Interval Analysis (VI-Analysis or VIA),
the core technique within the pedagogical approach. The key idea in VIA is
to attach intervals to the activation range of each input parameter looking for
the network's activations that lie within these intervals. VIA checks whether
or not a set of intervals is consistent, i.e. whether there exists a set of
network activations inside the validity intervals. It does this by iteratively
refining the validity intervals, excluding activations that are provably
inconsistent with other intervals. The end result is a set of validity intervals
for each input, a hypercube across all of the input dimensions.

Eclectic
The eclectic approach is merely the use of those techniques that

incorporate some of a decompositional approach with some of a pedagogical
approach or those techniques designed in such a way that they can be either
decompositional or pedagogical. The Rule-Extraction-As-Learning (REAL)
method, for example, is designed such that it can use either technique.

204 Chapter 8

In a paper describing the REAL technique, Cravin and Shavlik discuss a
way of extracting rules through supervised learning and network querying as
opposed to the common search-based techniques from the previous sections
[Craven 1994]. (They refer to the search methods as Rule-extraction-as-
search approaches.) Many of the search algorithms try to find rules that
explain the activations of hidden layer and output layer neurons in the
networks. The REAL technique instead will learn from the training
examples and query a network to determine if the specific instances from the
training set are covered by the target output result.

2*1 Developing Rule Extraction Techniques for V&V of
a Safety-Critical System

This section details the approach taken to determine whether rule
extraction will be a viable tool for the V&V of the DCS neural network used
in intelligent flight control (IPC). The Intelligent Flight Control System
(IPCS) project is working towards developing a real-time adaptable flight
control system utilizing neural networks. This project is a collaborative
effort among the NASA Dryden Flight Research Center, the NASA Ames
Research Center (ARC), Boeing Phantom Works, the Institute for Scientific
Research, Inc. (ISR), and West Virginia University (WVU). The first
generation (GENl) flight control concept was designed to identify aircraft
stability and control characteristics using neural networks and to use this
information to optimize aircraft performance in both normal and simulated
failure conditions.

Developers of the DCS neural network have been cautious about
expanding their use into safety- and mission-critical domains due to the
complexifies and uncertainties associated with these complex, adaptive
software systems. Since the DCS neural network and other adaptive neural
networks are beginning to be used within high-assurance systems, NASA
has encouraged research in the area of the V&V of neural networks to
answer the question: How can we be sure that any system that includes
neural network technology is going to behave in a known, consistent, and
correct manner?

2.1.1 Overview of IFCS Use of the DCS Neural Network

The IFCS provides an example of neural networks used in a safety-
critical application. Two types of neural networks are designed into the
IFCS GENl scheme. A pre-trained, non-adaptive neural network
component provides a baseline approximation of stability and control
derivatives for the aircraft. The second neural network is an online adaptive

Rule Extraction as a Formal Method 205

network that learns and adapts during flight to account for aerodynamic
changes, such as ones due to actuator failures.

In the fall of 2003, the IPCS GENl system completed successful testing
in flight on the NASA F-15 Advanced Control Technology for Integrated
Vehicles aircraft. This aircraft has been highly modified from a standard F-
15 configuration to include canard control surfaces, thrust vectoring nozzles,
and a digital fly-by-wire flight control system to enable the simulation of
different actuator failures during flight.

The online adaptive neural network, the DCS, used in the IPCS GENl
system is of special concern with respect to V&V. The DCS is a member of
a group of neural networks known as self-organizing maps. The DCS
algorithm, implemented in the GENl system by NASA ARC [Jorgensen
1997], was originally developed by Bruske [1994] and is a derivative of
work by Fritzke [1994] combined with competitive Hebbian learning by
Martinez [1993]. These neural networks are designed as topology
representing networks whose roles are to learn the topology of an input
space with perfect preservation.

The DCS neural network learns the fiinction that describes a map of the
input space, represented as Voronoi regions. The neurons within the neural
network represent the reference vector (centroid) for each of the Voronoi
regions. The connections between the neurons, C//, are then part of the
Delaunay triangulation connecting neighboring Voronoi regions through
their reference vectors.

This reference vector is known as the best matching unit (BMU). Given
an input, v, the BMU is the neuron whose weights, w, are closest to v. Along
with the BMU, the second BMU (SEC) is found using the Delaunay
triangulation and nearby neurons are adjusted within the BMU neighborhood
(with nearby neuron defined as the neurons connected to the BMU through
the triangulation).

The DCS algorithm consists of two learning rules, Hebbian and
Kohonen. Hebbian learning updates Ctj (Eq. 8.3) between neurons / andy to
reflect the topology (triangulation) of the input space where the connection
is a perfect fit of 1, if / andy are the BMU and SEC.

1 / G [BMU, SECl j e [BMU, SEC]

a • C:: a • C:: > 6
q / = i ^ ^ (8.3)

'^ ' 0 acij<e
0 i = j

206 Chapter 8

The forgetting constant, a, is included to produce a weakening between /
andy if they are not currently the closest to the stimulus, and ^is the edge
threshold, a minimum acceptable connection strength in order for the
connection to be considered valid. Kohonen learning is used to adjust the
weight vectors, w, of the neurons. The change in the weight vectors is
represented by Eq. 8.4 and Eq. 8.5.

^^BMU = ^BMU (V - ^BMU) (8-4)

Awj=e^(v-wj) (8.5)

where S^^^ is the BMU weight adjustment parameter and Sj^ is the
weight adjustment applied to the neighborhood of the BMU.

These two learning rules allow the DCS neural network to change its
structure. The ability to add new neurons into the network as it grows gives
the DCS neural network the potential to evolve into many different
configurations. This adaptive nature can open up the possibility of sub-
optimal or even erroneous solutions.

2.1.2 DCS Rule Extraction Algorithm

In order to determine whether rule extraction was a viable approach for
the V&V of the DCS neural network used in the IPCS, an algorithm that
applied to the DCS had to be found or developed. Several rule extraction
techniques had been developed for neural networks similar to the DCS.
RULEX is a tool offered by Robert Andrews and Shlomo Geva [1995b,
2002] that will extract rules from constrained error back-propagation
(CEBP), MLP, and local cluster neural networks. Andrews and Geva
provide MATLAB files that implement RULEX.

Another algorithm that seemed applicable to the DCS was the LREX rule
extraction algorithm developed by McGarry, Wermter, and Macintyre
[2001], School of Computing, Engineering, and Technology, University of
Sunderland, England. These algorithms are used to extract rules from radial
basis function (RBF) neural networks.

After examining both the RULEX and LREX techniques closely it was
determined that neither technique could be used directly to extract rules from
the DCS neural network in the IPCS. The literature reveals many techniques
and tools available for rule extraction, although most of these techniques and
tools are neural network specific. There is not one general rule extraction
technique that can be applied to every neural network; rather there must be a

Rule Extraction as a Formal Method 207

collection of techniques to handle the different types. Therefore a new
algorithm for extracting rules from the DCS was developed by ISR.

The algorithm developed for extracting rules from the DCS is a
modification of the LREX algorithm by McGarry [1999] that was used to
extract rules from a RBF neural network. After the DCS has been trained,
the weights are used as inputs to the algorithm. During the training, the
BMU corresponding to each data point is recorded and also used as input to
the algorithm. The training data is divided into regions based on the BMU.
Then for each region, x lower is the smallest value of the independent variable
that has a particular BMU and x upper is the largest value of that independent
variable that has that same particular BMU. These two numbers form
bounds for the intervals in the antecedent of the rule. (Example: variable >=
X lower AND <= X upper) Au interval is determined for each of the independent
variables and the statements are connected by AND to form the full
antecedent. When the DCS was used as a classifier with the Iris data, the
conclusion of the if-then statement was categorical. In this case the category
associated with the BMU was reported in the rule as the conclusion. When
the DCS was used to learn a function and the dependent variable was
continuous, then the conclusion was stated the same way the antecedent was
stated, intervals connected with ANDs. The algorithm used for the rule
extraction is in Fig. 8-1. The rules will be explained in Sections 2.1.4 and
2.1.5.

Input:
Weights of the DCS (centers of Voronoi region)
Best matching unit for each input
Ouput:
One rule for each cell of the DCS
Procedure:
Train DCS on data set
Record BMU for each input
Collect all inputs with common BMU to form cell
For each weight {w^

For each independent variable
^\o^vcr ~ "^i<^{^ I ^ has BMU = w.)
'̂ uppcr"" n^ax{x|x has BMU = w j

Build rule by:

Join antecedent statements with
Dependent variable = category

O R
Dependent variable in [y,̂ ^̂ .̂ ,̂ y ^^Ji
Join conclusion statements with AND

Write Rule

Figure 8-1. DCS Rule Extraction Algorithm

208 Chapter 8

2.1.3 Implementation of the DCS Rule Extraction Algorithm

In order to test the DCS rule extraction algorithm, first a generic
implementation of the DCS neural network was developed in MATLAB.
This implementation has a GUI that allows different sets to be loaded for the
purpose of training the neural network. As reflected in Fig. 8-2, the
command launchDCS brings up the window that, through a menu system,
allows the user to load a data file, classify the variables in the file as
independent or dependent, scale the data if necessary, configure the DCS,
and then train the DCS.

I DCS Configuration

Data SDB DCS htelp
l ln jx l

F Step 1: Loaded Data

F Step 2: Data Classified

F Step 3: Configure

F DCS Configured (Default)

F SDB Configured (Default)

F Scaling Set (Default)

F Ready to Train

#I5R
Figure 8-2. DCS GUI

After the DCS training was complete, then the rule extraction scripts
were called from the MATLAB main window using the command results =
extract_rules_DCS(dcs, data). Since the independent and dependent
variable names are used in the rules, each of the rule extraction source code
files is specific to the training data set.

Rule Extraction as a Formal Method 209

2.1.4 Testing Rule Extraction Algorithm on Benchmarking Data

To test the rule extraction algorithms, the DCS was trained on a
benchmark data set available to developers for testing purposes. The data
set chosen for this benchmarking exercise was the Iris data, available
through the University of California at Irvine, because it is a common data
set used by authors of other rule extraction techniques. The Iris plant
database is from original work of Fisher [1936] and contains three classes of
Iris plants (IrisSetosa, IrisVirginica, and IrisVersicolor). There are four
independent variables used to predict classification type (sepallength,
sepalwidth, petallength, and pedalwidth). One of the Iris classes is
linearly separable from the other two, but the other two are not linearly
separable from each other.

A five-fold cross validation approach was used for the testing of the Iris
data. This meant that the Iris data was divided into five equal parts, {Si, S2,
S3, S4, S5}, of which four parts were used for training and a fifth part is used
for testing. The Iris data contains 150 data points; therefore, the data was
partitioned into five groups of 30 random points.

After training on the Iris data, the DCS should have clustered the input
data into different classifications representing the different Iris types: Setosa,
Virginica, or Versicolor. To capture what the DCS learned, the rule
extraction algorithm described in Section 2.1.2 was applied to the trained
DCS. The output was a set of rules in the form of if-then statements. These
rules in Fig. 8-3 represent one such set of rules that attempts to capture the
Voronoi regions that the DCS formed to cluster the Iris data.

Since the extracted rules are a representation of the DCS, they should
classify data in the same way that the DCS classifies data. To test the rules
agreement with the DCS, the rules were implemented in MATLAB and
applied to the S5 subset partition of Iris data (the test set). The results from
the extracted rules were then compared to the results from the same data
classified by the DCS.

Five iterations of this procedure were completed to ensure that each
subset was used as test data. This meant that iteration one used subsets {Si,
S2, S3, S4} to train and S5 to test, iteradon two used partitions {Si, S2, S3, S5}
to train and S4 to test, and so on. When compared to the DCS, the extracted
rules had an overall agreement of 82% in classifying the Iris data. Results
are based on setting the minimum error for the network at 1.5. The
minimum error controls the growth of the network. The network will
continue to grow nodes until the minimum error is satisfied or the network
size reaches a preset limit for number of nodes.

210 Chapter 8

RULES FOR CELL!
IF (SL >-5.6 AND <=7.9) AND
(SW >=2.2 AND <=3.8) AND
(PL >=4.8 AND <=6.9) AND
(PW>=1.4AND<=2.5)
THEN...Virginica

RULES FOR CELL2
IF (SL >=4.3 AND <=5.8) AND
(SW >-2.3 AND <=4.4) AND
(PL>=L1 AND<=L9)AND
(PW>=0.1 AND<=0.6)
THEN...Setosa

RULES FOR CELL3
IF (SL >=4.9 AND <=7) AND
(SW >=2 AND <=3.3) AND
(PL >=3 AND <=5) AND
(PW>=1 AND<=L8)
THEN...VersicoIor

Figure 8-3. Rules Extracted from Iris Data

2.1.5 Application of Rule Extraction Algorithm to DCS Trained on
Flight Data

After a benchmark example had been executed and evaluated, the next
step was to apply the rule extraction algorithm to the DCS trained on IPCS
flight data. With the flight data, the DCS is used for function approximation
(DCS was used for classification with the Iris data). The flight data used
was obtained from an F-15 Flight Simulator developed at WVU for use in
testing the IPCS GENl scheme. This data set contains seven independent
variables and 26 dependent variables. These variables were introduced to
one of five different DCS networks, one network for each of the
aerodynamic derivative coefficients: Cz, Cm, CI, Cn, and Cy. Each network
learns the derivatives associated with a different coefficient. For example,
Cz learns the stability and control derivatives associated with pitching
moments due to normal force and uses the inputs of mach, altitude, alpha,
and beta as the independent variables and cza, czdc, and czds as the
dependent variables. After training the DCS on these variables the rules
extracted take on the form seen in Fig. 8-4. The data in this case is all
continuous data, so the rules give both antecedent and conclusion in the form
of intervals.

Rule Extraction as a Formal Method 211

RULES FOR CELLl
IF (mach >=0.78799 AND <=0.78945) AND
(altitude >=19860.484 AND <=19889.6526)AND
(alpha >=1.7003 AND <=1.8842) AND
(beta>=-0.029893 AND <=0.015156) AND
THEN (cza >=0.015062 AND <=0.019333) AND
(czdc >-0.22274 AND <=0.2287) AND
(czds >=0 AND <=0)

RULES FOR CELL2
IF (mach >=0.78455 AND <=0.8178) AND
(altitude >=19205.5546 AND <=19999.3379)AND
(alpha >=1.2545 AND <=1.7887) AND
(beta>=-0.20803 AND <=0.64913) AND
THEN (cza >=-0.076577 AND <=-0.002783) AND
(czdc >=0.22355 AND <=0.22448) AND
(czds >=0 AND <=0)

RULES FOR CELLS
IF (mach >-0.73926 AND <=0.78946) AND
(altitude >=19860.1718 AND <=21233.6014)AND
(alpha >=1.8854 AND <=2.4619) AND
(beta >=-0.079409 AND <=0.020729) AND
THEN (cza >=0.001184 AND <-0.015041) AND
(czdc >=0.20335 AND <=0.22271) AND
(czds >=0 AND <=0)

Figure 8-4. Rules from the Cz Network

As discussed above, in practice there are actually five different DCS
implementations in the IPCS GENl system: Cz network, Cm network, Cy
network, CI network, and Cn network. Each of the networks has an
individual variable list shown in Table 8-1. Each set of flight data contains
all variables needed to train the five different networks. The flight data
dcs_in1 was used to train the different networks and rules were extracted.

When trained on the Iris data, the DCS was used as a classifier, and thus,
computing the agreement of the rules with the DCS for the Iris data was
quite simple. With the flight data, the DCS is being used to approximate a
fiinction; as a result, determining the accuracy of the rules in this case is not
as straight forward. The rules are evaluated by examining the domain
coverage and the actual difference between the rule boundaries and the
Voronoi region boundaries.

212 Chapters

Table 8-1. DCS Networks Used for IPCS
Name of Network
Cz
Cm
Cy

CI

Cn

Independent Variables
mach, altitude, alpha, beta
mach, altitude, alpha, beta
mach, altitude, alpha, beta,
dstbd, drudd, daild
mach, altitude, alpha, beta.
dstbd, drudd, daild
mach, altitude, alpha, beta,
dstbd, drudd, daild

Dependent Variables
cza, czdc,czds
cma, cmdc, cmds, cmq
cyb, cydt, cyddc, cydr, cya

clb, cldt, clddc, cldr, clda.
clp, clr
cnb, cndt, cnddc, cndr, cnda.
cnp,cnr

Methods for refining the rule extraction algorithm and developing a
deterministic rule set for the DCS flight data application were developed
through funding provided through a NASA Ames STTR project titled A
Formal Method for Verification and Validation of Neural Network High
Assurance Systems. The original algorithm discussed in Section 2.1.2 is an
uncomplicated way to capture the Voronoi regions that are created by the
DCS. The refinement of the algorithm, discussed in the next section,
generates expressions that completely capture the n-dimensional convex
hulls that make up these Voronoi regions. These expressions are used as the
antecedent for the new rules and a deterministic consequent was developed.
The problem in refining the rules in this way is that the explicit description
of Voronoi regions becomes overly complicated and can be less
understandable than the information given by the initial rule type.

There is a definite tradeoff for rule sets between accuracy and
understandability. A more simplistic, less accurate rule set may be useful to
lend human understandability to the knowledge of the neural network. A
more deterministic and accurate rule set may provide other methods of
V&V, such as checking the rule set for inconsistencies in a model checker or
theorem prover. Whatever format is used, it is important to ensure that any
rules extracted are accurate, useful, and understandable.

2.1.6 Refining the Rule Extraction Algorithm

A new algorithm was developed to generate deterministic rules that
utilize the structure of the DCS knowledge by considering the Voronoi
regions that partition the input space.

As explained previously, the DCS partitions the input space into Voronoi
regions. These regions are convex polygons in two dimensions and convex
n-dimensional polyhedra in n dimensions. The original rule extraction
algorithm did not capture the entire polygon or polyhedron region with the
rules. The original algorithm used a "box" to represent that region and the
rules represent the box. (See Fig. 8-5)

Rule Extraction as a Formal Method 213

Figure 8-5. Original Rule Coverage

The new rule extraction algorithm was developed to completely capture
the polygonal regions of the input space that represent the structure of the
trained DCS. The previous rule format was non-deterministic and although
understandable, could not be used as input to custom-off-the-shelf (COTS)
tools or implemented. The new rule format is:

IF input e region 1 (input satisfies a set of constraints)

THEN output = multivariable linear expression
(8.6)

Below is an example of the new deterministic rules for a two-
dimensional data set.

IF (6 * x + 0 * y > = 4 8) A N D (2 * x + 2 * y > = 3 2)

AND (-1 * X + 4 * y >= 8.5) AND (-3 * x + 2 * y >= - 25.5)

A N D (4 * x - 2 * y > = 1 6) A N D (- 3 * x + 2 * y > = - 2 3 . 5)

AND(-5*x + 0*y>=-57 .5)

THEN z = 0.75 * x + 0.75 * y - 7.5

ENDIF

(8.7)

214 Chapter 8

These rules are specifically designed for the DCS structure implemented
by the IPCS project. The first part of the rule (after the IF) gives a set of
constraints that defines a region of the input space based on a possible BMU
and second best matching unit (SEC) pair. The subsequent parts (after the
THEN) give the DCS output based on this region. For the IFCS DCS
implementation, the output is determined based on the BMU and SEC pair.

The algorithm for the deterministic rule extraction technique for the DCS
is shown in Fig 8-6. This algorithm was developed because no such
technique existed for self-organizing maps. However, a similar rule
extraction technique does exist for the feed-forward neural network.
Techniques developed by Setiono [2002] and outlined in his paper
"Extraction of rules from artificial neural networks for regression" align with
the technique created for the DCS.

Inputs:

Output:

P = Set of all weights (centroids of the Voronoi regions)
A = Adjacency Matrix

R = Set of rules that describe a partition of the input
space with associated outputs

Procedure:
Use P to define a Voronoi diagram that partitions the

input space.
Use A to determine neighboring regions in the Voronoi

diagram to find BMU and SEC pairs.

For each p « P (centroid of Voronoi region and BMU)
Calculate Voronoi region boundaries.
For each q € P - {p} such that v is a neighbor of w
(centroid of neighboring region and SEC)

Determine boundaries that divide the region
with centroid w into subregions.

Determine antecedent based on boundaries
defined by p and q.

Determine consequent equation based on DCS
output determined by p and q.

Write rule.

Figure 8-6. Detenninistic Rule Extraction Algorithm

To test the accuracy, deterministic rules were generated for three
different data sets. The rule output and the neural network output had 100%
agreement. The rules are constructed to completely cover the input space
and to use the DCS recall function as the output based on the region,
therefore these rule have complete agreement with the neural network. Fig.
8-7 shows a two-dimensional example of how the rules partition the data

Rule Extraction as a Formal Method 215

based on BMU and SEC. The solid lines, in the figure, indicate the original
Voronoi regions that divide the plane based on the BMU. The dotted lines
show how the original regions are subdivided to account for the SEC. The
lines that define the subregions form the rule antecedent. Note that the entire
input space is covered, with each of the subregions representing one rule.

•§tmm^

Figure 8-7. Deterministic Rule Coverage

2.2 Using Extracted Rules for V&V of DCS

One goal of this research was to demonstrate that the rules extracted from
the DCS neural network could be used to assist in the V&V of the neural
network used in a safety-critical application. The rules are viewed as a
descriptive representation of how the DCS handles data. This representation
provides the inner knowledge of the neural network that can be used to help
understand whether the neural network is functioning as expected.

After extracting the rules from the IPCS neural networks, the rules were
compared against the two documents provided by the IPCS project team, the
Software and Interface Requirements Document (SIRS), IPC-SIRS-P004-
UNCLASS-051501 [ISR 2001a] and the Interface Control Document (ICD),
IPC-ICD-P008-UNCLASS-011501 [ISR 2001b]. The usefulness in
requirements traceability and the overall usefulness of rule extraction to the
IV&V practitioners understanding were assessed.

216 Chapters

2.2.1 Comparison of Rules Against Requirements

The first way the extracted rules can be used is as an assessment against
the expected ranges of the inputs and outputs of the DCS system. The SIRS
for the IPCS project identifies the following requirements for the DCS
network:

Requirement 3.2.4.3 [04] in Fig. 8-8 refers back to an earlier requirement
within the document that was levied against the pre-trained neural network.
This requirement is displayed as Table 2-2 in Fig. 8-8. The purpose of this
table is to clearly identify the IFCS flight envelope and the allowed ranges
for the inputs that define the envelope.

A V&V practitioner can look at these ranges in the table and compare
them against the ranges in the antecedents of the rules extracted from the
DCS. This verification activity proves to be worthwhile since there are
certain situations that may lead to the DCS network rule antecedents that
violate the input range limits. One possibility could be the improper use of a
DCS initialization point. If the DCS networks start with no knowledge and
are initialized at an improper starting point (such as the first two neurons
within DCS are initialized to values of zero, something not unreasonable),
then these initial values may affect the Voronoi regions within the DCS in an
adverse way causing them to allow values outside the flight envelope.
Looking at the antecedents of the extracted rules may identify this situation.

Another way the rules may be used is in the analysis of specific input
variables. For example, mach and altitude are inputs that do not cross the
zero value within their acceptable ranges. One may want to check to ensure
that the extracted rules align with the expected ranges, and in situations
where the zero value is within a rule, perhaps identify this as an area of
special interest that requires additional analysis.

The rules may have an additional use in examining different modes of
operation. The purpose of the IFCS is to induce safe failures and allow the
system to adapt to accommodate these failures. Some of the failures may
induce learning that extends beyond the expected ranges of the inputs. (This
will be especially true for output ranges that will be discussed a little later.)
Retaining prior learning, especially after a failure occurs, may be something
the IFCS project team will want to investigate. The rules may identify
Voronoi regions that violate the expected input ranges and point to an area
of the input space that will require further simulation and understanding
before the project proceeds.

Rule Extraction as a Formal Method 217

3.2.4.3 [04] Inputs
The OLNN inputsshaHOl] process the following 8 sensor inputs: mach, altitude, alpha, beta, stabilator
deflection, rudder deflection, aileron deflection, and canard deflection.

The OLNN software shaH02] conform to the units as specified in the ICD. The inputs of beta and rudder
deflection shaHOS] be absolute magnitudes only.

The sensor inputs into the OLNNshaH04] undergo the same input pre-processing used for the BLNN as
described in 3.2.2.1 and Table 2 -2.

Additional OLNN inputs shaHOS] include the derivative deltas, which are the differences between each
stability and control derivative output from the PID and output from the BLNN. These derivative deltas are
described in Section 3.2.3.4 PID Outputs.

The specific derivative deltas are as follows:

AC^ AC .̂ Aa^. AC;„̂ ^ AC,„̂ . AC,„̂ . AĈ ^

AC, AC, AC, AC, AC, AC, AC, AC, AQ AQ AC, AQ

AC„ AC„ AC„ AC„ AC„ AC„ AC„

Table 2-2. BLNN Input Range Limits
Input ^

__ -^-Signal ;^
(dimensions)
Mach (Mach)
Altitude (feet)

Alpha (degrees)

Beta (degrees)
Stabilator

Deflection(degrees)
Rudder

Deflection(degrees)
Aileron

Deflection(degrees)
Canard

Deflection(degrees)

_, Minimum
: " Value ;^

0.20
5000.00

-4.00

-10.00
-30.00

-30.00

-40.00

-35.00

-. Maximnm - :: 1
= - - V a l u e . =>:: :i: -

1.60
50000.00

Function of Flight Envelope-=i ^ - j

20.00

(if Mach <= 0.85 OR
Altitude >= 25000.00)

14.00 1

(ifMach> 0.85 AND
Altitude < 25000.00)

10.00 1
15.00

30.00

40.00

5.00

Figure 8-8. Requirements for the OLNN Input

Just as with the inputs, the SIRS also identified a range of expected
outputs. These requirements were spread across the Parameter Identification
(PID) and on-line learning neural network (OLNN), the DCS, and sections
of the SIRS and the ICD. Some of the requirements that are levied against
the OLNN appear below in Fig. 8-9.

218 Chapters

2.2.1.1 Output

The OLNN attempts to remember the derivative deltas between the PID and the BLNN. The OLNN then
produces an output that is the learning of these derivative deltas. These outputs are called the derivative
corrections and there is a deriva tive correction for each of the 26 stability and control derivatives. The
specific "derivative corrections" are as follows:

AC, AC, AC, AC„ AC^ AC, AC,
^a "^Sc '-Ss ^^^a ^^S^ ^^^S^ ^^hj

AC, AC, AC, AC, AC, AC AC AC

AC„ AC„ AC„ AC„ AC„ AC, AC,

AC/ ^^1, AC, AC,

These derivative corrections shaHOl] be computed to a minimum precision of six places after the decimal
point.

The OLNNdoes not provide any outputs to the SOFFT controller when the PID and OLNN are executed in
the passive open-loop mode. For this Build, the outputs are only used for internal recording and then for
later study and analysis. The OLNN shaH02] provide outputs to the Instrumentation bus as described in
IPC -ICD -FXXX -UNCLASS-011501.

The outputs generated by the OLNN will include the processed inputs that the OLNN makes use of in its
computations.

Figure 8-9. Requirements for the OLNN Output

The ICD contains the output description for all 26 stability and control
derivatives, which includes the expected minimum and maximum values.
The extracted rules from the DCS can be compared against the description of
these derivatives. This could identify if the Voronoi regions of the DCS
allowed for outputs that can violate those expected ranges.

2.2.2 Comparison of Rules Against Design Considerations

One of the most important steps of V&V is the traceability of
requirements throughout the lifecycle processes. Requirements traceability
can be a difficult task with a neural network because of their adaptive
capabilities. Another factor that can make traceablility difficult is the fact
that neural network requirements are often not clearly or concisely written,
even though the overall goal for the system is generally well understood.
The extracted rules represent the learning of the neural network, thus the
rules could be used to determine if the network is meeting specific implied
requirements.

For example, one requirement for the network used in the IPCS that is
hard to explicitly state is "the network will provide smooth transitions of
derivatives between regions within the flight envelope." If the neural

Rule Extraction as a Formal Method 219

network has been pre-trained to learn the different regions within the flight
envelope, then the network's knowledge near the boundaries should be
examined. This can be achieved by examining the extracted rules. If system
designers are not satisfied with the network performance, then it is possible
the network may require further training or modification. Either way, the
examination of the extracted rules can help to determine the integrity of the
neural network.

Fig. 8-10 depicts the IFCS flight envelope used for GENl. The flight
envelope can be broken into regions (a process known as gain scheduling)
where a set of linear equations is used to approximate the behavior of that
region. Due to the non-linearities of the aerodynamics throughout the entire
flight envelope, several regions are often used.

Figure 8-10. IFCS Flight Envelope

Fig. 8-11 is a graph that shows the mach-altitude components of the
extracted rules for this same data set. Fig. 8-12 shows an example of the
rules extracted from the DCS CI network after training on a single set of
flight data. The plot was constructed just using mach and altitude to see if
the ranges of the rules may have any relationship to the use of gain
scheduling or can visually tell us anything important.

220 Chapter 8

2.15

2.1

2.05

MO* Rule Boundaries for CI

1.95

— Cell
— Cel2

Cel3

0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82

Figure 8-11. Plot of Mach vs. Altitude CI Network Extracted Rules

There are a few observations that can be made that provide insight into
the Voronoi regions and the overall neural network performance. For
example, the network was trained such that it only developed three cells.
This is a result of using a small data set to train the neural network and using
certain settings to control how the DCS learned

From experience with the DCS network and the method used to extract
the Voronoi regions (the cells), it can be deduced that the cells were
developed across time. This means that cell 1 developed first, followed by
cell 2 then cell 3. Cells 2 and 3 appear as subsets of cell 1. It also seems
that the cells are moving from higher altitude to lower altitude and from
lower mach to higher mach as the last two cells appear in the lower right
hand side.

The V&V practitioner may be able to gain insights from these
observations. With the limited data, he or she may be able to identify the
type of flight maneuver used to train the DCS. For example, if the data is
decreasing for altitude and increasing for mach, this may indicate the plane
is diving. This might explain the placement of the cells representing the data
extracted from the DCS after learning on this maneuver.

The practitioner may also be able to assess the size of the regions. For
the problem at hand, the first cell may be too large and the other cells should

Rule Extraction as a Formal Method 221

RULES FOR CELL!
IF (mach >-0.73926 AND <=0.8178) AND
(altitude >= 19236.9846 AND <=21233.6014)AND
(alpha >= 1.3343 AND <=2.4619) AND
(beta >=-0.079409 AND <=0.057813) AND
(dstbd >=-0.079409 AND <=0.057813) AND
(drudd >=-0.079409 AND <=0.057813) AND
(dalid >=-0.079409 AND <=0.057813)
THEN (clb >=2.7495 AND <=2.8781) AND
(cldt >=-0.052976 AND <-0.077512) AND
(ciddc >=-4.82l2 AND <--3.3811) AND
(cldr >=-4.8212 AND <=-3.38I I) AND
(clda>=-4.82i2 AND <=-3.3811)
(clp >=-4.82i2 AND <=-3.38n)
(clr>=-4.8212 AND <-.3.3811)

RULES FOR CELL2
IF (mach >=0.78455 AND <=0.8I763) AND
(altitude >=19205.5546 AND <= 19998.39II) AND
(alpha >= 1.2545 AND <=1.6976) AND
(beta >=-0.20803 AND <=0.64913) AND
(dstbd >=-0.20803 AND <=0.64913) AND
(drudd >=-O.208O3 AND <=0.64913) AND
(dalid >=-0.20803 AND <=0.64913)
THEN (clb >=2.8005 AND <=2.898) AND
(cldt >=-0.24914 AND <=0.658I2) AND
(clddc >=-3.8321 AND <=-3.278) AND
(cldr >=-3.8321 AND <=-3.278) AND
(clda>=-3.8321 AND<=-3.278)
(clp>-=-3.8321 AND<=-3.278)
(clr>=-3.8321 AND <=-3.278)

RULES FOR CELL3
IF (mach >=0.78235 AND <=0.8I78) AND
(ahitude >=19205.6047 AND <=20032.147) AND
(alpha >=1.4345 AND <=2.0295) AND
(beta >=-0.065293 AND <=0.2066) AND
(dstbd >=-0.065293 AND <=0.2066) AND
(drudd >=-0.065293 AND <=0.2066) AND
(dalid >=-0.065293 AND <=0.2066)
THEN (clb >=2.7964 AND <=2.8791) AND
(cldt >=-0.05l466 AND <=0.I9309) AND
(clddc >=-4.2774 AND <=-3.5067) AND
(cldr >=-4.2774 AND <=-3.5067) AND
(cida >=-4.2774 AND <=-3.5067)
(clp >=-4.2774 AND <=-3.5067)
(cir >=-4.2774 AND <=-3.5067)

Figure 8-12. Extract Rules: CI Network Trained on d c s i n l

222 Chapter 8

not be subset of the first. The fact that this figure is only drawn across two
of the input dimensions can distort the analysis and perhaps a 3D drawing, or
the data spread across multiple plots, may be better able to highlight
differences in the cell.

Since the initial intent here is to look at the data with regards to the flight
envelope, it is apparent that the flight envelope between .74 and .82 mach
and 19250 and 21250 altitude will be able to generate outputs. If we were
interested in this region within the IPCS flight envelope, the coverage might
be satisfactory.

Fig. 8-13 is the plot of the combination of DCS extracted rules for the
five networks on one graph. Such a plot can be used to visualize how the
neural network Voronoi regions are spaced across the region. It can be
determined if there is complete coverage of the flight envelope.

2.15
.x10 '

2.05

Combined View of All DCS Cells

0.73 0.74 0.75 0.76 0.77 0.78
Mach

0.79 0.8 0.81 0.82

Figure 8-13. Plot of Mach vs. Altitude from All Extracted Rules

In the DCS flight application, the V&V practitioner may be interested in
specific information related to input/output ranges, size and location of
Voronoi regions across the entire input/output domain, or maybe
chronological formation of the Voronoi regions. Also note that since the
DCS is adapting during operation, the rules will only represent a particular

Rule Extraction as a Formal Method 223

instance in time. The network could be allowed to continue to train,
stopped, and rules extracted to compare to the previous sets. This is an
iterative process that can continue until a sufficient understanding of the
neural network's adaptation is accomplished. This would allow the V&V
practitioner to view the movement of the Voronoi regions across time as new
data is presented to the neural network for training.

2.2.3 Using Extracted Rules to Uncover Coding Errors

The rule extraction algorithm, which generated human understandable
rules, is based on how an input stimulus is matched to a centroid of the DCS
or its best matching unit (BMU). The human understandable rules support
verification inspection methods. Each input stimulus results in the selection
of a BMU internal to the DCS network. The BMU is considered the
centroid of a cell and each input that related to that BMU is considered to be
a member of that cell. The human understandable rules were generated to
describe each cell. The minimum and maximums of each input variable
related to a specific BMU are used in the rule antecedents. The minimum
and maximum of each output variable associated with this cell make up the
rule consequent. Any BMU that did not have input stimulus matched to it
did not generate a rule.

When the human understandable rule algorithm was applied to a DCS
network that had been trained on the Iris data, a discrepancy was noted
between the number of rules generated and the number of nodes within the
DCS network. There were fewer rules than nodes. This implied that for the
set of input data that was used to train the neural network, a node was
established that never matched any of the other data, and thus these BMUs
did not have corresponding rules. This led to investigation of the existence
of these nodes by walking through the source code and looking for
problems. Debugging and execution traces pointed to a problem in some of
the DCS code that had been optimized to run within a MATLAB
environment. The original IPCS DCS code was developed within the C
programming language. For optimization purposes, when the code was
moved into a MATLAB script for experimentation, all usage of 'for' loops
were removed and replaced with vectorized math. One of the lines of code
used for the optimization dealt with the identification of BMUs, and
incorrectly referenced the BMU variable.

Instead of only looking across the existing set of nodes within the DCS
network, it made use of the DCS maximum allowed number of nodes. In
effect, when looking for the BMU, the DCS was allowed to consider nodes
which had not yet been assigned, and by default were at zero value and can
be thought of as existing at the origin. At times, these nodes were actually

224 Chapter 8

better at matching the input than any one of the existing nodes, and DCS
manipulated these non-assigned nodes when it shouldn't have. The result
was that nodes that had not been assigned learned and adapted. They
showed up as having non-zero values and appeared to be nodes upon visual
inspection of the DCS structure, but didn't actually exist. DCS was losing
some potential learning within these nodes. The rules ignored these nodes
since they weren't able to ever become BMUs that led to the discrepancy.
The line of code was modified to ignore non-assigned nodes, and then DCS
nodes correctly matched up with the human understandable rules.

Another example involves using the refined deterministic rules to
uncover two coding errors. The deterministic rule extraction process is
designed to have 100% agreement with the performance of the DCS
network. However, testing of some of the first sets of deterministic rules
showed that there was a large disagreement between the rules and DCS.

The rules were re-structured so that the antecedents were broken into a
rule pertaining to each BMU, and then under the BMU rules, each
neighboring SEC rule was present. This allowed comparison to see if the
errors between the rules and DCS were based upon BMU selection, SEC
selection, or within the consequent. By comparing the BMU output from
DCS with the specific BMU rule that the input corresponded to, it was
discovered that the BMU selection was consistent between the rules and the
DCS. But the selection of the SEC was not matching between the two.
Further investigation required analysis of the DCS recall function.

In the DCS recall function, two errors within the same line of code were
discovered. One was related to substitution of the 'max' for 'min'
commands within DCS. For the recall function to perform properly, the
smallest distance is always used to identify the closest node to a stimulus.
This is true also when selecting the second closest node from among a
BMU's neighbors. But the code showed that the 'max' function was being
used in place of the 'min' function. This would subsequently show up
within the DCS recall function as the DCS always selected the node furthest
away from the stimulus.

Further, this same line of code contained an incorrect reference to the
strengths of the neighborhood for the BMU rather than the distances of the
neighbors from the stimulus. This mistake is quite a large mistake, but due
to the nature of the small DCS networks, and the small values on which the
network was learning, the mistake was masked much of the time. Normal
testing of the DCS showed that it could achieve accuracies above 90%, even
with this error present. The robustness of the DCS network made discovery
of this error difficult.

The line of code was changed to consider the distances rather than the
connection strengths and to choose the min instead of max. The rules and

Rule Extraction as a Formal Method 225

DCS were compared again. This gave the expected results of 100%
agreement. The deterministic rules were deemed a success because they had
allowed for the discovery of two coding errors, which were not readily
apparent during normal testing.

3. SUMMARY

Along with the IPCS example mentioned in this chapter, neural networks
are used in safety-related areas including advisory systems for healthcare,
load forecasting for electrical power and gas, industrial process control and
monitoring, and fire alarms. The commercial benefit for this technology is
evident from the extent of industry-led research [Lisboa 2001]. There is no
doubt that with the use of neural networks expanding to safety-related areas
that rigorous V&V processes specific to neural networks are required.
Traditional software V&V must be augmented to accommodate the
opaqueness and the adaptive nature of the neural network.

Neural networks lack the ability to explain how they reached a specific
output. This is one of the main reasons neural networks are not trusted: in
most applications users want to know the reasoning behind the conclusion of
the learning system or expert system. Rule extraction algorithms provide a
means for either partially or completely decompiling a trained neural
network. This is seen as a promising vehicle for at least indirectly achieving
the required goal of enabling a comparison to be made between the extracted
rules and the software specifications.

Rule extraction would satisfy several roles in the development and V&V
of high assurance neural network systems.

1. The V&V practitioner could apply rule extraction to obtain a set of rules
that mimics the functionality of the network and then use these rules for
comparison against the original set of requirements.

2. Rule extraction can provide a tester with insight into what a fixed neural
network has learned and assist in determining the acceptability of the
network.

3. After a neural network has been trained and tested to satisfactory levels, a
system developer could then apply rule extraction to refine requirements.
The refined requirements would aid the system tester in the development
of adequate testing procedures and test cases.

4. Additionally, these rules could be validated through the use of formal
methods, such as a model checker.

226 Chapter 8

At a minimum, extraction of these rules would provide some sense of
confidence that the network will behave as it was intended. Extraction
would be used as static analysis for adaptive systems. The rules would need
to be extracted after each iteration of learning and then judged for
correctness.

There is still much to discover about the use of rule extraction usefulness
for the V&V of neural networks. Rule extraction offers the possibility of
requirements traceability in a system that is not explicitly designed. The
rules can also undergo design team review and analysis to detect improper
network behaviors or missing knowledge. Through rule extraction, a system
analyst might be able to ascertain novel learning behaviors that had not been
previously recognized. By translating these features into a comprehensible
English sentence, the analyst can gain a better understanding of the
network's construction and perhaps the input domain as well.

The same techniques used to map rules from the network in rule
extraction can also be used in two additional ways: rule initialization or rule
insertion. Rule initialization is the process of giving the adaptive network
some beginning knowledge. A system developer may have improved
confidence if the starting condition of the network is known, which may lead
to a constrained path of adaptation. Rule insertion is the method of moving
symbolic rules back into a network, forcing the network's knowledge to
incorporate some rule modifications or additional rules. An adaptive
network could benefit from this scheme if the system developer wanted to
exert a condition onto the network or reinforce conditions in the network.
Examples of this might include restricting the network to a region of the
input space or instructing it to deliberately forget some data.

These rule extraction techniques that are prevalent in the academic
literature must be compiled into a usable form that will assist the developer
or V&V team in certifying that the neural network is dependable,
predictable, and ready for use in a system. Toward the goal of making rule
extraction techniques readily available to assist in V&V, the authors of this
document will further their research through a NASA ARC STTR project
with the goal of developing a comprehensive and practical tool to transfer
neural network rule extraction technology into neural network development
practice.

REFERENCES

Andrews, Robert; J. Diederich; and A. B. Tickle. 1995a. A Survey and Critique Of
Techniques For Extracting Rules From Trained Artificial Neural Networks. Knowledge
Based Systems S:373-3S9.

Rule Extraction as a Formal Method 227

Andrews, R. and S.Geva. 1995b. RULEX & CEBP Networks as the Basis for a Rule
Refinement System. Hybrid Problems, Hybrid Solutions, ed. John Hallam. lOS Press. 1-12.

Andrews, R and S. Geva. 2002. Rule Extraction From Local Cluster Neural Nets.
Neurocomputing 47:1 -20.

Bruske, Jorg and Gerald Sommer. 1994. Dynamic Cell Structures. In Proceedings of Neural
Information Processing Systems (NIPS), 497-504.

Craven, Mark; and J.W. Shavlik. 1994. Using Sampling and Queries to Extract Rules from
Trained Neural Networks. In Proceedings of the 11th International Conference on
Machine Learning 37-45.

Fisher, A. 1936. Annals of Eugenics 7:179-188.
Fritzke, B. 1994. Growing Cell-Structures - a Self-Organizing Network for Unsupervised and

Supervised Learning. Neural Networks 7(9): 1441-1460.
Fu, L. M. 1994. Rule Generation From Neural Networks. IEEE Transactions on Systems,

Man, and Cybernetics. 28(8): 1114-1124.
Institute for Scientific Research, Inc. (ISR). 2001a. Software and Interface Requirements

Document (SIRS). IFC-SIRS-F004-UNCLASS-051501.
Institute for Scientific Research, Inc. (ISR). 2001b. Interface Control Document (ICD). IFC-

ICD-F008-UNCLASS-011501.
Institute for Scientific Research, Inc. (ISR). 2002. Toward Reliable Neural Network Software

for The Development of Methodologies for the Independent Verification of Neural
Networks. IVVNN-LITREV-FOOl-UNCLASS-11120.

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks. NASA Technical Memorandum 112198, NASA Ames Research Center.

Lisboa, P. 2001. Industrial Use of Safety-Related Artificial Neural Networks. Health and
Safety Executive Contract Research Report 327.

Martinetz, T. M. 1993. Competitive Hebbian Learning Rule Forms Perfectly Topology
Preserving Maps. In Proceedings of International Conference on Artificial Neural
Networks (ICANN) 427-434. Amsterdam:Springer.

McGarry, Kenneth, John Tait, Stefan Wermter, and John Mclntyre. 1999. Rule-Extraction
from Radial Basis Function Networks. In Proceedings of International Conference on
Artificial Neural Networks 1:613-618. Edinburgh, Scotland.

McGarry, Kenneth, Stefan Wermter and John Macintyre. 2001. The Extraction and
Comparison of Knowledge from Local Function Networks. International Journal of
Computational Intelligence and Applications 1(3): 369-382.

Pecheur, Charles. 2000.Verification and Validation of Autonomy Software at NASA.
NASA/TM 2000-209602.

Pecheur, Charles and Stacy Nelson. 2002. V&V of Advanced Systems at NASA.
Rodrigues, Pedro, Jose Felix Costa, and Hava T. Siegelmann. 2001. Verifying Properties of

Neural Networks. IWANN (1) 2001: 158-165.
Setiono R., W. K. Leow, and J. M. Zurada. 2002. Extraction of Rules from Artificial Neural

Networks for Nonlinear Regression. IEEE Transactions on Neural Networks 13(3): 564-
577

Tickle, Alan B.; R. Andrews; M. Golea; and J. Diederich. 1998. The Truth is in There:
Directions and Challenges in Extracting Rules from Trained Artificial Neural Networks.

Thrun, S. 1995. Extracting Rules from Artificial Neural Networks with Distributed
Representations. In Advances in Neural Information Processing Systems (NIPS) 7, eds G.
Tesauro, D. Touretzky, and T. Leen. Cambridge, MA: MIT Press.

To well, G and J. Shavlik. 1993. The Extraction of Refined Rules from Knowledge Based
Neural Networks. Machine Learning 13(1):71-101.

Chapter 9

AUTOMATED TEST GENERATION FOR
TESTING NEURAL NETWORK SYSTEMS

Brian J. Taylor
Institute for Scientific Research, Inc.

\. INTRODUCTION

Neural networks in control systems present a difficult problem for
testing: generation of sufficient sets of data for adequate test coverage.
Commonly, the neural network developer has a set of data of which upward
of 75% is used to train the network. This usually leaves less than 25% of the
remaining dataset for neural network evaluation. Often, that is not enough to
conduct an in-depth study of the network and certify it for safety- and
mission-critical systems.

This chapter presents a test generation algorithm that will facilitate this
need and improve upon the many different ways the neural network system
is evaluated. From a system integration perspective, the algorithm can
increase the size of the available data for testing, and at a reduced cost from
other forms of generating data. Based on user settings, the algorithm could
be used to find interesting pieces of new data to exercise the system in ways
which normal data generation would not. Other forms of testing are possible
with the algorithm including reliability assessment, stress testing, and
sensitivity analysis. To facilitate evaluation of the tool itself, a MATLAB
implementation was created called the Automated Test Trajectory
Generator.

Test data generation is defined as a technique that assists in the
generation of test data. These can include system simulations that allow
recording of data for later usage, pieces of software that generate random
sequences of data, or more sophisticated algorithms that are directed in
specific ways to create test data.

230 Chapter 9

Generation algorithms, and test data generation tools especially, have a
purpose of reducing the testing time by aiding a system developer in
generating a large volume of test data.

Several different types of test generators exist but three basic ones are:
random test data generators, pathwise generators and data specification
systems. Data specification systems generate test data from a language that
describes the input data. Pathwise test data generators work to generate test
data that follows an execution path throughout the program. Random test
data generators perform exactly as they sound, generating data in a random
fashion.

One technique that is lacking in data generation is the development of
methods to create continuous sets of data. Continuous data (for this chapter,
referred to as trajectories) can be time-dependent, previous value dependent,
or some combination thereof In the case of control systems, continuous
data is necessary to fully test how the system performs.

When neural networks are placed within the control system, they require
being tested with continuous data as well. That requirement was the primary
thrust of the development of the Automated Test Trajectory Generation
(ATTG) algorithm.

If the neural network was not in a control system, random data generation
might work to assist in testing. Due to the nature of the data, the neural
network should be exercised with trajectories rather than disjoint data points.
The use of trajectories is even more critical if the neural network learns from
data trajectories rather than single-point data.

Within the IVVNN methodology, the algorithm fits into the investigation
of steps required for the testing of neural network systems. The traditional
testing approach taken by many neural network developers is the brute-force
method where the network undergoes testing, testing, and more testing.
Based on prior experience, this level of testing may fail because of the
likelihood that inadequate test data is available. This situation leads to the
consideration of data generation techniques, and this algorithm seems like a
good candidate. Evaluation of the technique will be done against the
intelligent flight control system (IPCS).

In particular, three main questions will be evaluated for this work:

1. Can this test data generation technique be applied to the non-linear IPCS
flight data to produce sets of new data that are meaningful?

2. Can the ATTG tool be improved to facilitate the investigation of question
1?

3. How would a verification and validation (V&V) practitioner make use of
test data generation to apply to the testing of neural networks?

Automated Test Generation for Testing Neural Network Systems 231

2. DETAILS OF THE AUTOMATED TEST
TRAJECTORY GENERATION ALGORITHM

The test generation technique draws upon prior work conducted at the
West Virginia University under the guidance of Dr. Bojan Cukic for
completion of a Master's Thesis with the then Department of Computer
Science and Electrical Engineering. During that time, the technique was
programmed as a command-line interface (CLI) tool which was hard-coded
to work on a special case: a sensor failure detection, identification, and
accommodation flight control scheme [Taylor 1999; Napolitano 1999].

The possible improvements to test data generation, offered by the step-
by-step process of the ATTG, were significant for purposes of providing
improvement in the evaluation and analysis of control systems, especially in
regards to neural network systems. The test case used throughout this
chapter, the IPCS first generation (GENl) flight control system, makes use
of two neural network systems, each of which can benefit from usage of the
test data generation technique.

For the pre-trained neural network (PTNN) system, a significant amount
of training data is available from which the PTNN was developed.
However, this data is collected as single-point data of generally disconnected
points in the flight envelope. While the PTNN can be tested against each of
these single points, the training-testing data is not set up to enable testing
across a continuous range.

As the PTNN undergoes system integration testing, the data applied to it
is continuous in nature, originating from aircraft states and measurements
generated in real-time from either a hardware-in-the-loop simulation or
another sophisticated high-fidelity simulation. A test data generation
scheme, as described in this chapter, would aid in the integration level
testing by providing an ability to generate additional continuous data, at a
reduced cost by reducing the need for piloted simulations.

The dynamic cell structure (DCS) network experiences a similar need for
integration testing and a different need in regards to studying its online
adaptive learning. Since the DCS network will be adapting in real-time,
researchers would like to feel comfortable that given different sets of test
data, the network will adapt in an acceptable manner. The set of data
generated from piloted simulations may not be enough to achieve that level
of confidence. This algorithm can offer the DCS developers an option.

Because one of the IVVNN methodology goals is the creation of
guidance to aid the V&V practitioner with neural network systems, the
ATTG needed to undergo several improvements to prepare it for generating
input into the methodology development. It needed to change to
accommodate the different kinds of IPCS flight data so that the application

232 Chapter 9

of the technique to the PTNN and DCS can be documented and used to
improve the IVVNN guidance. The following subsections detail the test
generation algorithm and the modification made to the ATTG to facilitate its
usage upon IPCS.

2.1 Description of the Algorithm

This algorithm works by expanding an existing set of test trajectories into
a larger set. Here, a trajectory is defined as a sequence of continuous data
across varying time. The test trajectories must have the characteristic of
being separable into independent and dependent variables. The independent
variables are clustered into coarse grain regions of the operational profile,
and their corresponding dependent variables are placed into their own
clusters based upon the results of the independent clustering.

Regressive models are then developed to describe these clustered regions
and the relationships between the independent clusters and the dependent
clusters. Each model in turn acts as a predictor for its particular region of
the operational profile.

Note that in the use of regression to predict new trajectories, an
assumption is made that the trajectories undergoing generation can be
considered random variables that are describable by some function. A
second assumption is that within the clustered sections of the operational
profile, the mathematical independent variables can be fitted via regression
to the random dependent variables that make up the corresponding test
trajectories of the cluster implying a need for relatively strong correlation.

The algorithm can be thought of as a function that transforms one set of
inputs that can be controlled into a set of trajectories that define the
operational profile for the system that cannot be controlled. A mapping of
the independent variables into regions of the system input space will occur.
Once created, the models will be able to generate several new trajectories in
the input space that are then used for testing.

2.1.1 Collect Data

Collection of the test data that undergoes this generation process can be
done from various sources, such as data collected from actual system usage
or from data retrieved via a system simulator.

Because the regressive models require independent-dependent variable
relationships, the collected data should consist of the intended test
trajectories to be expanded, along with additional variables that either help to
create the trajectories or help to define them. The sample trajectories sadsfy
the dependent variable need and in some cases may contain several

Automated Test Generation for Testing Neural Network Systems 233

parameters, with each parameter consisting of a series of data. The
additional variables will fulfill the role of the independent variables and
must contain the same size of data as the trajectories.

Two requirements for proper operation of the regressive models are that
the additional variables have some correlation to the test trajectories and that
they be mathematical variables. For example, if the trajectories for a system
define an airplane's flight path, pilot inputs would qualify as additional
variables. If the trajectories described a chemical reaction, additional
variables could be the amount of reactants used and temperature variation
during the process. Since these variables will later be perturbed in the
algorithm, it should make sense that they can be altered in a controllable
manner. If the independent variables themselves depend upon the
trajectories, no prediction of new trajectories will be possible.

2.1.2 Processing the Data

Depending upon the data collected, some processing of the data may be
required before it can be used by the model generation routines. For the
clustering algorithm to work correctly, all data sets should contain the same
length of data points. This can be accomplished by truncating data sets to
the size of the smallest data set. If truncation would lose too much data,
other possibilities include eliminating shorter data sets or interpolation of the
data to increase the size of the shorter sequences.

Conversion of the data may also be required if the test trajectories have
been collected from sources using different units of measurement. This does
not mean normalizing the different components of a trajectory, but
normalizing any differences in measurement units between trajectories. This
might occur if trajectories are recorded on different systems or perhaps even
across different days.

If noise is part of the collected data, noise removal by filtering should be
done as part of the data processing. Several well-known noise-filtering
algorithms exist from the area of signal processing. These algorithms can
consist of smoothing filters that will attempt to average out spikes in the data
due to noise.

2.1.3 Clustering the Data

If testing of a system is directed by the operational profile, failures that
are likely to occur during normal operation are detected based upon how
often they are used. Lyu [1996] discusses two ways that the operational
profile test selection can be done: coarse grain and fine grain. Coarse grain
testing is the process of selecting a region or cluster of the operational

234 Chapter 9

profile while fine grain testing is the process of selecting tests from within
the coarse cluster. While the coarse grain guides the test selection, fine grain
testing requires several different elements from within the coarse grain
region.

Since the goal of the entire approach is to develop test trajectories, it is
usefiil to separate parts of the controllable variables into clusters that will
allow the generation algorithm to predict new trajectories within a coarse
input domain region. By applying clustering techniques to the independent
variables, division of the test trajectories into the coarse grain regions of the
operational profile is done simultaneously.

Once a cluster has been determined, the centroid for each group can be
found and then used by the regressive models. The centroid is defined as the
median value of all data contained within the cluster. The basic steps for a
trajectory-clustering algorithm (dealing with the independent and dependent
variables) would consist of the following:

1. Acquire a set of test trajectories
2. Identify the independent and dependent variables
3. Select, from amongst the independent variables, data that can be used to

perform the clustering
4. Transform these variables, if necessary
5. Select a distance measure
6. Select a clustering technique and a desired number of clusters.
7. Perform clustering
8. Select a representative component from each cluster
9. Interpret results
10. Change variables, clustering technique, number of clusters, etc.
11. Repeat steps 3 to 9 until results are acceptable

2.1.4 Variable Selection

The independent variables that correlate to a trajectory will be the
parameters that guide the clustering process. If several parameters exist,
some may have a greater impact on the clustering process than others. Less
important parameters should be ignored as they can increase the cost of the
process.

The selection of parameters to use for clustering can be done with
analysis techniques like principle component analysis (PCA) and
multivariate analysis. These techniques can identify variables with higher
statistical significance, which should be included in the clustering process.
For example, characteristics of important parameters are their significance to
the trajectory and their amount of variance. Low variance will not provide a

Automated Test Generation for Testing Neural Network Systems 235

distinguishing metric between trajectories and have little impact on
clustering.

No limit is imposed on the number of variables used, but it is suggested
that the clustering process uses fewer, as opposed to more, variables when
possible. Larger number of variables can slow the clustering process down.
The criteria, which designates an appropriate number, is influenced by the
available processing power of the computer being used to generate the
trajectories. Memory and processor limitations would have more of an
impact for a desktop, but probably not for a high-end unit.

2.1.5 Transforming the Data

Data scaling may be applied if the parameters are linear in nature and
have widely varying relative values or are spread across different
dimensional units. Such a scenario may occur if multiple parameters are
used in the clustering and one parameter uses measurements in feet while a
second uses measurements in seconds. These two parameters have little
relation to each other and scaling them to use non-dimensional units will
help the clustering process. Scaling should not be applied to data with non­
linear parameters as the scaling can remove this non-linearity. Three
common techniques used to scale data are normalizing to zero mean and unit
variance, range normalization, and percentile normalization.

Normalizing to zero mean and unit variance forces each value of the data
sequence to fall within a uniform distribution centered around zero. Given a
series of data X e {xu X2,..., x^j, the î ^ value X/' is scaled by

. X: - X
x, '=-^ (9.1)

where x is the measured mean and cris the standard deviation.
Range normalization transforms a series of data from _Xmm ^maA so that

each data point falls in the range [0, 1]. The scaling formula is

x, '= ""' """"" (9.2)

Xmin and Xnuix are the minimum and maximum values that make up the
series of data. A problem with the range normalization approach is that data
outliers of extreme ranges will have a major influence on the min and max
values causing poor normalization. The next scaling technique works better
under those circumstances.

236 Chapter 9

Percentile normalization performs very similarly to range normalization
except that data is transformed so that 95% of the data points making up X
fall between 0 and 1. With this technique, data outliers who will fall above
97.5% or below 2.5%) of the average value will not affect the normalization
process. The data is scaled by

x^ =^ ^^- (9.3)

2.1.6 Distance Metrics

A standard way of expressing relationships of trajectories in a cluster is
through a distance metric between those trajectories [Hartigan 1975]. The
distance metric is calculated over an A2-dimensional space where n represents
the number of chosen parameters used to describe a trajectory. This metric
is then used to identify which group a trajectory belongs to by determining
how close it is to the group centroid. The distance metric selection is just as
important as the selection of which variables are to be used to perform the
clustering. One distance metric may perform well at distinguishing between
trajectories in the cluster while another distance metric may include every
single trajectory.

The most commonly used distance metric is Euclidean distance.
Euclidean distance is simply the distance, d, between two trajectories across
the entire sequence of data.

Assuming that a trajectory is defined as X{xj, X2, ..., xj, then the distance
between two trajectories, x and j ^ , is given by:

d =
.'=1

(9.4)

where the distance squared between each parameter of a trajectory is
calculated. If the trajectories are n dimensional, the distance metric changes
to:

•yif+(^2,.-y2f+'"^(\.-yny\y (9.5)

Automated Test Generation for Testing Neural Network Systems 237

A variation on Euclidean Distance is the Weighted EucUdean Distance.
This distance metric applies a weighted value at to each parameter based
upon that parameters significance.

IL^ii^i-yiY (9.6)

where a/, / = 1,2,..., n, is the chosen weight for the respective parameter.
The weighted distance metric can be used if the parameters have not been
scaled yet or to give more control over how the clustering algorithm will
perform based on a priori knowledge [Hartigan 1975].

Another suggested distance metric is the Chi-Square distance. This
metric is primarily used in distribution fitting. Before this metric is used,
each individual parameter, Xu must be normalized in order to prevent
parameters with lower values from having higher weights.

^^j^jhZliL (9.7)

2.1.7 Clustering Techniques

Clustering techniques fall into one of two categories: hierarchical and
non hierarchical. In non-hierarchical techniques, trajectories are assigned
into k arbitrary clusters until the intragroup variances of each cluster reach a
minimum. The value of A: can be user specified.

In hierarchical techniques, the collection of trajectories is divided into n
desired groups. Hierarchical techniques may be either agglomerative or
divisive. With agglomerative techniques each trajectory is separated into its
own cluster. Neighboring clusters are merged together based upon distance
metrics until the desired n groups are attained. Divisive techniques start
with all trajectories in one cluster. The cluster is then divided until it reaches
the desired number ofn clusters.

2.1.8 Interpreting the Results

The number of trajectories in each cluster will serve as a measure of
coarseness of the regions of the operational profile. A typical cluster
generally should have around 4 or 5 trajectories within it. If no trajectory
was omitted from the cluster, the number of expected clusters could be
increased or reduced. While it can happen that each cluster contains only

238 Chapter 9

one trajectory, having more than one per cluster will allow for better model
fitting for that particular cluster. If there are obvious trajectories existing as
outliers of the cluster, the clustering technique should probably be refined.
Any outliers will skew the model development results.

2.1.9 Selecting a Representative Trajectory

After the clustering has been performed, a set of independent variables
should be selected that serves as the average of the cluster. Since the
clustering was performed upon independent variables, the component
selected should be the sequence of data that lies closest to the centroid of the
cluster based upon the chosen distance measure.

After the set of independent variables have been selected, the trajectory
associated with this set becomes the representative trajectory. The purpose
of the representative trajectory will be to give the regressive models the best
selection that they can use to develop new trajectories within the cluster.
The representative trajectory serves to define the cluster by labeling the
coarse region of the input domain.

2.1.10 Developing a Model

Ideally, whatever model is chosen should be of much less complexity
than the software component being tested. Use of various regressive models
is suggested, including simple linear, multiple linear, autoregressive moving
average (ARMA), and non-linear models. The linear models have shown to
be a simplistic approach achieving short computational time. The important
point to remember is that the success of the models will be determined by
the acceptability rate determined by the acceptance testing of the data being
generated.

In order to choose the best model, the algorithm should develop several
different models and try different combinations of input data. For example,
for each representative trajectory, a simple linear model could be developed
for one of many different independent variables. The same can be done for
combinations of independent variables for the multiple-linear regressive
model. By exhaustively trying combinations of independent-dependent
variables, the algorithm can vote to choose which model works the best for
that particular cluster of trajectories. This also prevents the algorithm from
being locked into any one type of regressive model across the entire domain.
As regions of the operational profile change, the models are allowed to adapt
to that part of the domain.

Automated Test Generation for Testing Neural Network Systems 239

2.1.11 Discriminant Analysis

When attempting to determine which variables are the most significant
for use in the regressive models, discriminant analysis may need to be
considered. Many techniques for discriminant analysis exist, such as PCA
and multivariate analysis. PCA looks at the correlations between the
independent and dependent data. By using a correlation matrix, PCA
assigns weights to variables that have a higher correlation to the dependent
data. The higher the weight, the more significant the variable will be. The
variables chosen for the models should represent the most significant
parameters.

If multiple-linear regression is chosen, it is suggested that only models
using two, three, or four variables be used. Additional variables will not
increase prediction significantly and will decrease time efficiency and add
unnecessary complexity.

2.1.12 Smoothing

Application of a smoothing function to the final results of the model may
be applied to remove sharp edges in the model output. The easiest form of
smoothing is averaging the trajectory. Under averaging, a point of data is
added to neighbors on both sides of the data point and divided by n, the
number of data points added together.

2.1.13 Cross Correlation Analysis

The advantage of using the trajectory closest to the centroid to represent
the cluster becomes apparent when a decision has to be made about choosing
the best regressive model. After a regressive model is constructed, the
model can be applied to the remaining trajectories in the cluster. The
regressive model's predicted output to these unused trajectories can then be
directly compared to the actual trajectories themselves through the use of
correlation analysis to determine the accuracy of the models.

240 Chapter 9

Cross-correlation analysis looks at the relationship between two
sequences of data through a correlation coefficient, r. The stronger the
relationship, the higher the value of the coefficient. The equation for
correlation is given by:

^^^ (s^Xiy)

E x ^ - ^ ^ - ^y2_{Yjf_
(9.8)

where X is the summation of all data points in X, XY is the summation of
the product of all data points in X and 7, and n is the total number of data
points.

The values of r can range from +1.00 to -1.00 with a perfect reladonship
occurring at 1.00 and a perfect inverse relationship occurring at -1.00.
Values for r between 0.00 and 1.00 indicate that some relationship exists but
that it is not perfect. As r approaches 1.00 the relationship between the two
trajectories becomes stronger.

After a model has been developed, it is then applied to each of the
remaining trajectories in the cluster. The model's predicted output is then
compared against the actual recorded rates through cross-correlation. This
will result in a table of correlation values for each model against each
trajectory in the cluster.

2.1.14 Choosing the Best Model

The choice of the best model is dependent upon the results of the
correlation analysis from each model and the total computation time per
model. An equation describing the selection can be written as

P^Tmodel ^e^'-''-^'''"''^^'''' (9.9)

where Tmodel represents the average time to build a particular regressive
model, and cor model represents the average correlation of that model. P is
then a quantifiable measurement of the value of the particular regressive
model approach towards the prediction within the cluster. This equation has
smaller values for regressive models that can be built faster and for
regressive models that have higher correlations between the predicted and
recorded trajectories. Model selection is then made by choosing the
regressive model with the smallest value of P.

Automated Test Generation for Testing Neural Network Systems 241

2.1.15 Perturbing the Original Data

By perturbing the original parameters used as independent variables in
the regressive models, the system is able to generate predictions from the
new input. The amount of newly generated trajectories is then related to the
amount of new independent variables that can be perturbed. Any trajectories
within a cluster are available to undergo perturbation, even the
representative component.

How the original data is perturbed is very important. It cannot be
modified too much, lest the data becomes irrelevant to the models just
developed. Provided that the time series data resembles multiple step
functions, there are various ways to perturb the data.

One method is to multiply the original data by some value. This keeps a
consistent rate of change but modifies the amplitudes of the time series data.
The value by which the original data is multiplied should not be so large that
the perturbed data would no longer correspond to trajectories inside the
cluster. Perturbation via multiplication should probably keep the new data
within ±5% of the original data.

A second method is to modify the duration of some value in the data
sequence while keeping consistent values for the amplitudes.

2.1.16 Application of the Model

After a new set of data has been generated, this data is then given to the
model for prediction of new test data. While this is the simplest module,
care must be taken to ensure that all model descriptions, including
coefficients, have been stored for later use. As was done with the model
generation, a smoothing function can be applied here to the regressive model
output.

2.1.17 Acceptability Rules

One of the more important parts of the algorithm is to determine if the
newly created test data actually qualifies as acceptable data. A set of rules
describing acceptable trajectories can be used against the predicted
trajectories to determine valid tests. After each iteration of the algorithm,
the rules are applied to both the output trajectories predicted by the models
and the perturbed independent variables used for those models.

The acceptability rate of the generated trajectories can guide the
generation process as well as give an indication to how successful the
approach is. If a certain perturbation process produces higher acceptability
rates, that process could be further used with minor modifications as needed

242 Chapter 9

during each iteration. Perturbations producing bad results, of course, would
be avoided. This implies a relationship between the perturbation and
acceptability modules.

One guide to developing acceptability rules upon the perturbed input can
be the distance metric used for the clustering process. Since the clustering
was performed upon the independent variables, the distance between the
perturbed data and the cluster centroid can decide if the perturbed data falls
within the cluster. Perturbations, which produce new values falling outside
the cluster, are discarded.

Acceptability rules defined to analyze the regressive model outputs can
be based upon the correlation of the output trajectories to the trajectory
defined as the representative component for the cluster undergoing
regression. Since this trajectory acts as the classification of the coarse grain
input, predictive trajectories that fall outside of a 70% correlation could be
rejected as falling outside of the coarse grain region.

Another possible area of regressive output rules are those that are system
specific. These rules would identify any trajectories or perturbed
independent variables that violate some definition of the input domain,
perhaps by exceeding minimum or maximum values. These rules can look
at anything from slope analysis of the trajectories to comparisons of global
minimums and maximums.

2.2 Example Tool Usage Results

For testing the suitability of the algorithm, two different data sets were
used. The first was an original set of data that had been used to create the
first implementation of the test tool. The second was a set of data that was
generated from a simulation used by the IPCS program.

2.2.1 Usage of the ATTG Algorithm on SFDIA Flight Data

The SFDIA data set comes from a project between ISR, WVU, and the
NASA DFRC. This data set is a collection of independent variables (pilot
inputs of pitch, yaw, and roll, and aircraft speed, Mach) and dependent
variables (aircraft state measurements of P, Q, and R). The test data
available was completely generated through the usage of the Aviator Visual
Design Simulator flight simulation program.

Since the original version of the ATTG was written to produce extra sets
of SFDIA test data, this data was used for tool testing purposes throughout
the ATTG's re-design and development.

The SFDIA data was collected in a manner that lent itself to pre-
clustering of the data sets. Each of these pre-clusters was a collection of

Automated Test Generation for Testing Neural Network Systems 243

roughly 15 sets of data from a reasonably consistent performance of an
aircraft maneuver. Because of this, the ATTG was only able to perform
minor improvements to the clusters by eliminating outliers.

This was one of the differences with the new ATTG. When a data set
was read in, the ATTG performed clustering within this pre-cluster, often
times separating the pre-cluster into three to four good clusters. This meant
that the ATTG was differentiating the same consistent maneuvers into finer,
more closely related maneuvers. This consequently led to better regressive
model development over the prior implementation and better acceptability
results.

Results from applying the CLI version of the ATTG to the SFDIA data
can be found in "Regressive Model Approach to the Generation of Test
Trajectories" [Taylor 1999]. Since the GUI ATTG matched the results from
the CLI ATTG, no further results are presented here for brevity.

2.2.2 Usage of the ATTG Algorithm on IFCS Flight Data

The IFCS flight data is a collection of independent variables (eight sensor
readings including mach, altitude, alpha, beta, stabilator deflection, aileron
deflection, canard deflection, and rudder deflection) and dependent variables
(26 stability and control derivatives). The NASA DFRC-developed F-15
flight simulator generated the available data.

There were several problems encountered in applying the ATTG to the
IFCS flight data. Briefly, these included:

1. Handling of the IFCS validity flags and their consequences on generating
data

2. Handling a single IFCS data set per cluster
3. Dealing with partially controllable independent variables
4. Dealing with different test data sets

Problem 1 - Handling of the IFCS Validity Flags
The IFCS data set is intended as a collection of data used to train the

DCS neural network. For space consideration, details on the workings of the
DCS neural network are not presented here, but additional information can
be found in "Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks" and the DC neural network report for the IFC program
[Jorgensen 1997; ISR 2001].

The IFCS data set is composed of three classifications of data: sensor
readings, stability and control derivative deltas, and stability and control
derivative delta validity flags. The sensor values are the independent
variables for the system. The DCS networks use these for training, but they

244 Chapter 9

are not the values that the DCS networks recall. The sensor values work
well as the independent variables within the ATTG tool.

The stability and control derivative deltas (or just derivative deltas) are
generated by another software component, the parameter identification (PID)
system. The derivative deltas are the important dependent variables that are
used by the DCS networks to train upon.

The derivative validity flags are an indication of the confidence the PID
has in the values it is generating. In this way, the validity flags act as an
initial check, or even run-time monitor, on the PID output. When the flag is
a one, the derivative delta is considered valid and should be used by the DCS
for training. When the flag is a zero, the derivative delta is considered non-
confident and the DCS does not use the value for training.

This presents the first problem. The ATTG algorithm should not be used
to estimate the validity flags. Statistical generation of the validity flags
would have no meaning within newly created data sets. However, the
ATTG should only generate data that the PID has considered valid - it would
do V&V personnel no good to generate data that is considered invalid by the
system.

This leads to one possible solution: pre-process the IPCS data by
identifying slices within the dependent data which are considered valid, and
only use these valid segments from which to generate models and new data.

The solution is complicated though by the nature of the usage of the
dependent data by the DCS networks. Each DCS network takes in multiple
dependent variables for training. For example, the Cz DCS network uses
Cza, Czdc, and Czds as dependent variables. These variables have to be
presented at the same time and synchronized for the same time because they
utilize the same independent variables (the sensor data). So any slices that
are created through the pre-processing need to be a slice across all of the
dependent variables together.

This could lead to difficulty in model fitting because for any given
dependent variable there may be sections within the slice that contain invalid
data (because the corresponding dependent variables are valid during this
section).

Problem 2 - Handling a Single IFCS Data Set Per Cluster
Problem 2 occurs because each IPCS data set is usually one maneuver

across a time of 60+ seconds, with some maneuvers extending beyond
several minutes. Obtaining consistent maneuvers over long periods of time
is difficult because human pilots can be highly non-deterministic. This
implies that each set of collected data for a maneuver will reside within its
own cluster. If not, then the collected data within a cluster for a particular

Automated Test Generation for Testing Neural Network Systems 245

maneuver may be so different between each instance of that maneuver that
good regressive models cannot be made to fit the entire cluster.

Problem 3 - Dealing with Partially Controllable Independent
Variables

The third problem is a relatively minor problem, but is something that
should be considered and addressed. For a proper perturbation of the
independent variables, the variables are assumed to be controllable. By this
it is meant that the variables are somehow specifically selected or chosen.
For example, a pilot's inputs are a function of a pilot's desires; the motion of
controlling an aircraft is repeatable and generally by design.

With the IFCS data, the independent variables are sensor readings
describing the state of the aircraft. These include Mach, altitude, alpha
(angle of attack) and beta (sideslip angle). While the pilot can influence
each of these (Mach - throttle control, altitude, alpha, beta - stick inputs), it
could be argued that these variables do not necessarily lend themselves to
perturbation. They are not true controllable variables because they are not
selected or chosen; they are measurements from the results of other selected
or chosen variables.

For the purposes of this experiment they were chosen anyway. However,
perturbations placed upon these variables should be well understood.
Perturbations such as adding random noise would be acceptable, while
modifying them to resemble a step function or application of a non-linear
multiplication may not.

Problem 4 - Dealing with Different Test Data Sets
The fourth problem is less of a problem and more of an important

consideration. As there are five DCS networks within the IFCS system, and
each network requires a different set of independent-dependent inputs for
training, the ATTG must be applied five different times to generate data for
each network. It is not configured to automatically generate subsets of data -
the ATTG user must do this manually.

2.2.3 Example from Applying ATTG to IFCS Flight Data

There was not enough time within the schedule for this subtask to
complete an exhaustive application of the ATTG tool to the IFCS data. It is
expected that during later tasks, the tool can be re-applied to IFCS data to
garner better results.

There was enough time to use a single set of flight data that was
generated by a NASA DFRC simulation with the ATTG tool. Since there
are five DCS networks, the Cz network was chosen for data generation. The

246 Chapter 9

Cz network has four independent variables (mach, altitude, alpha, and beta)
and three dependent variables (Czadelta, Czdcdelta, Czdsdelta).

2.2.4 Cluster Results

As explained in the description of the problems encountered when
applying the ATTG algorithm to the IPCS data, each cluster only includes a
single member. Therefore no real clustering was performed on the IPCS
data.

2.2.5 Regressive Model Results

Each dependent variable had 57 models created for the single cluster.
Predictions for Czadelta were very good with an average correlation
usually around 90% with real data. The linear and ARMA models were able
to achieve above 90% for some situations. Predictions for Czdcdelta had
equally similar results with most of the models achieving between the upper
80% to lower 90% cross-correlation. As expected, Czdsdelta was the worst
because it never contained valid data, and therefore model fits were usually
in the mid-30%) to low 40% range.

2.2.6 Best Regressive Model Results

Since there was only one cluster, there were only three best models
selected, one for Cza_delta, Czdc_delta, and Czds_delta.

Table 9-1. Selection of the Best Model for Each Dependent Variable
Dependent Variable Best Model to Predict Variable

Cza_delta ARMA {machavgnew}
Czdc_delta ARMA {alphaavgnew}
Czds_delta ARMA {alpha avg new}

New Generated Flight Data
New independent variables were created by applying a randomly

distributed white noise of 2% to the original set of independent variables.
This new data was then fed into the regressive models and new dependent
variables were generated as indicated in the following examples.

Cza, as shown in Fig. 9-1 had the best visual and acceptability results.

Automated Test Generation for Testing Neural Network Systems 247

3

2

1

0

(0

-1

-2

-3

-A

XlO
1 1 1 1 1

/ . - '"^\^

1/ ^^^<^=>x /

Jl

1

Original Cza 1
Estimated Cza |

-

-

,_l - 1 1 1 .1

20 40 60 80 100 120 140
Data

Figure 9-1. Cza Results

Czdc, as shown in Fig. 9-2, while having high correlations (around 90%
for the regressive models) did not produce as acceptable a visual result. As
expected, the Czdc acceptability was quite low.

The results for Czds, as shown in Fig. 9-3, are at first disappointing
visually, but they are explained by the fact that Czds is never considered
valid within the IFCS system, and so building a model to predict the Czds
data would not be beneficial in the first place. The amount of variance seen
within Czds is a reason for it being considered invalid by the IFCS system
and a reason why the regressive models were not able to fit the data very
well.

2.3 Hoŵ the Algorithm is Useful to V&V Practitioners

The algorithm has many potential uses, some of which are briefly
discussed here. It can create new data for general testing purposes, can
assist in the specific creation of larges sets of similar data for sensitivity
analysis or

248 Chapter 9

.X10'

140

Figure 9-2. Czdc Results

^xlO'

20 40 60 aO 100 120 140

Figure 9-3. Czds Results

Automated Test Generation for Testing Neural Network Systems 249

large sets of widely different data for anomalous testing, and is an overall aid
in brute force testing or reliability assessment.

2.3.1 Creation of New Data

One of the expected problems facing V&V practitioners is the lack of
available test data to test a system with neural networks. In fact, the V&V
practitioner may be presented with only the exact same data used to train/test
the neural network. The test generator will offer the ability to take those
data sets and create additional data sets.

In some situations, the generation algorithm can fit the original data well
and thus be able to produce very similar sets of new data. But from
experience, what is more common is slightly poor fitting due to
nonlinearities within the data. In those situations, the model can share
similar trajectory characteristics like spiking trends and general shape, but it
is not a perfect fit. Yet this might be the strength of the algorithm.

Because of the difficulty in matching nonlinear data, the model is close,
but not exact. This imprecision offers the ability to create new data that is
different and perhaps entirely new to the existing neural network knowledge.

The created data sets can have any number of different characteristics.
The V&V practitioner can choose to create good approximations with the
regressive models and allow for small perturbations of the independent
variables to perform a sensitivity analysis on the neural network system.

Consider Fig. 9-4. These are the results of building a predictive model
describing the stability and control derivative Cma. The model was
composed of the independent variables alpha, beta, altitude, and Mach
number. This derivative is highly influenced by the independent variable
alpha, or the angle of attack of the aircraft. In the figure, the original Cma
value is represented in red. The predictive model, applied with no
perturbation on any of the independent variables, is represented in blue. To
evaluate the change in the output of the predictive model given small
changes to alpha, three perturbations were applied to alpha. These were
merely multiplication by constant values of 1.1, 1.3, and 1.5.

250 Chapter 9

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.06

h

\\

V

\-

1

A

1
cma

1

r

alpha:

1 1

L

1 J~~

M.5

1 |__

1 I

alpha =
alpha =
alpha =

1 1

" 1 " •

/
/

= 1.0
= 1.1
= 1.3

-^ i
— cma 1
— alpha = 1.0

alpha = 1.1 k
— alpha = 1.3

alpha = 1.5 |{

-̂

.^^^^--^^ - — ' " ^ ^ ^ ^ ^ N , ^ !

•J

^

J 1 1

10 12 14 16 18 20
Time

22 24 26 28 30

Figure 9-4. Example of Sensitivity Test Generation

The small constants applied to alpha produced similar trajectories. It
wasn't until alpha was modified by a 50% change that the generated
trajectory started to change. This gives the ability to create data that is very
similar, yet have a small enough difference to examine how the network will
perform. It is possible that small changes between test trajectories can show
interesting behavior patterns of the neural network. This may lead to more
direct testing efforts or re-evaluation of the network's learning and to a
better understanding of how it will handle data within the system.

2.3.2 Anomalous Data Evaluation

Another approach a V&V practitioner may desire is to create imperfect
regressive models or to widely perturb the independent data so as to create
significantly different test sets with lower statistical relationship to the
original data. This technique may introduce the neural network to entirely
new sets of test data, even test data that may not totally exist within the
operational profile of the system. Such data could allow the V&V
practitioner to examine how the system will react to anomalous data. Does

Automated Test Generation for Testing Neural Network Systems 251

the neural network system handle anomalous data and can it operate
correctly given such data?

Fig. 9-5 depicts the test generation algorithm modeling of the Cnda
derivative. In this instance, the best model chosen was a 4-variable multiple-
linear regression built using the independent variables of alpha, beta,
altitude, and mach. The model lacks some of the spiking characteristics of
the original signal and is perhaps a suitable candidate for creating drastically
different data sets for testing.

x10

250
Time

Figure 9-5. Predictive Model for the Cnda Derivative

Figs. 9-6 through 9-9 show some of the possible combinations that can be
selected with the perturbations on the independent variables to give different
data sets.

In Fig. 9-6, alpha has been augmented with a 2% random noise across its
entire trajectory. None of the other independent variables were modified.
Combining this alpha with the unmodified beta, altitude, and Mach, the
multiple-linear regressive model generated a slightly noisy signal. Some of
the spiking characteristics of the original Cnda begin to appear with this
augmented data.

252 Chapter 9

xlO"
1

^

Brl A

\ 1

1

L

1

Ij

1 1 ,1
— • cnda

perturb: alpha:noise:2% 11

jij 1
WW^ ML \

1 1

1 , ,.J
50 100 150 250

Time

Figure 9-6. Results from Introducing Random Noise on Alpha

Fig. 9-7 (note the different y-axis scale from other figures) shows what
happens when the independent variable, altitude, is modified to account for a
0.05% random noise. The high amount of variance now apparent in the
newly generated trajectory indicates the close reliance the regressive model
has on altitude and demonstrates how much Cnda can change with small
perturbations. But this high amount of variance may be something of
interest to the practitioner because it will allow inspection of the neural
network should it receive such a signal during operation. The practitioner
may want to investigate how an adaptive neural network would respond to
this high amount of variance, or he/she may want to see how a non-adaptive
network will behave.

Changes in beta did not affect the newly generated data as much as
shown in Fig. 9-8. Like the perturbations on alpha, changes in beta show up
as spikes within the generated trajectory. Again, this shape of the signal
may be useful during testing and analysis.

Automated Test Generation for Testing Neural Network Systems 253

. x 1 0

250

l-lgiirc 9-7. Results from Introducing Random Noise on Altitude

Figure 9-8. Results from Introducing Random Noise on Beta

254 Chapter 9

Besides changing the signal by adding variance, the newly generated
trajectories can undergo a translation along a dimension, as can be seen in
Fig. 9-9. Here Mach was multiplied by a very small change. The result was
an increase in the trajectory, almost as if a bias was added into it.
Generation of signals like this would allow for testing of consistent
trajectory behaviors (peaks and dips, rate of change, etc.), but at different
magnitudes.

x 1 0 '

Time

Figure 9-9. Results from Introducing a Constant Multiplier on Mach

2.3.3 Brute Force Testing and Reliability Assessment

The V&V practitioner may also want to use the trajectory-generating tool
for the generation of good statistically related data for brute-force testing of
a neural network system. If the neural network system undergoing
evaluation requires a certain level of confidence for an expected failure-rate,
then large sets of test data along with statistical analysis is the method by
which to determine and verify that confidence. In some situations, the
amount of test data to achieve that level of assessment will simply not be
available to the V&V personnel. The trajectory generator would be one
option they would have to try to increase the number of test sets.

Automated Test Generation for Testing Neural Network Systems 255

3. SUMMARY

Three questions were investigated for this work.

1. Can this test data generation technique be applied to the non-linear IPCS
flight data to produce sets of new data that are meaningful?

As the results within Section 2.3.2 show, the algorithm is applicable to
the non-linear IPCS flight data and, with the usage of the ARMA models,
can produce acceptable new data. The technique still requires several more
iterations upon the IFCS flight data to produce better acceptable statistics.
Other answers may be needed in regards to the four problems that were
experienced in applying the algorithm to the data, and perhaps some of these
solutions can be folded back into the algorithm itself.

2. Can the ATTG tool be improved to facilitate the investigation of Question
1?

The ATTG tool was improved and is now flexible enough to allow the
generation of data from different sources, with different dimensionality, and
with different sizes. This was necessary because the algorithm needs to be
tested and the tool should not interfere with that process. Now that it exists
as a generally easy to use GUI within MATLAB and provides improved user
feedback including visual displays, it allows the algorithm to be applied and
studied much more easily than it had before.

3. How would a V&V practitioner make use of test data generation to apply
to the testing of neural networks?

Section 2.3 provides some discussion on the usefulness of the technique,
but there are probably even more possibilities. Essentially, though, the
algorithm will facilitate the application of testing and testing preparation
because it provides a way to create additional test sets. These test sets can
be controlled during development to allow a V&V practitioner to decide
how the test sets can be used and possibly what to expect from them. The
algorithm allows for the creation of very similar trajectories from original
trajectories (facilitating sensitivity analysis, reliability assessment, or brute
force), for creation of widely varying not-too-similar trajectories (for
sensitivity analysis or stress testing), and for the creation of combinations of
the two types, which may allow for discoveries within the testing process
through an automated means.

256 Chapter 9

REFERENCES

Hartigan, J. A. 1975. Clustering Algorithms. Yale University. Wiley & Sons.
ISR 2001. Dynamic Cell Structure Neural Network Report for the Intelligent Flight Control

Program. Internal Deliverable written by the Institute for Scientific Research, Inc. for
NASA Dryden Flight Research Center, Co-Op Agreement NCC4-125, January 4, 2001.

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks. NASA Technical Memorandum 112198, NASA Ames Research
Center, Moffett Field, California, May.

Lyu, Michael. R. 1996. Handbook of Software Reliability Engineering. IEEE Computer
Society Press. New York: McGraw-Hill.

Napolitano, M.R., Molinaro, G., Innocenti, M., Martinelli, D. 1999. A Complete Hardware
Package for a Fault Tolerant Flight Control System Using On-Line Learning Neural
Networks. In Proceedings of the 1999 American Control Conference. San Diego, CA.
4:2615-2619.

Taylor, Brian J. 1999. Regressive Model Approach to the Generation of Test Trajectories.
Master's thesis, West Virginia University. Available at
http://etd.wvu.edu/templates/showETD.cfm?recnum=1077.

Chapter 10

RUN-TIME ASSESSMENT OF NEURAL
NETWORK CONTROL SYSTEMS

Bojan Cukic\ Edgar Fuller^, Martin Mladenovski\ and Sampath Yerramalla'
^Lane Department of Computer Science and Electrical Engineering, West Virginia University,
^Department of Mathematics, West Virginia University

1. INTRODUCTION

Since online self-adaptive systems are characterized by continual
adaptation to changing environmental conditions, the safe behavior of such
systems cannot be guaranteed using traditional software validation methods.
This chapter presents run-time risk assessment methodology, a novel
methodology for validating self-adaptive software systems based on online
operational monitoring and data fusion techniques.

Online operational monitoring is a multiple-monitor based validation
methodology that inherits its theoretical underpinnings from the generic
stability and convergence analysis of Lyapunov's theory. The output data
from various monitors are fused together using Murphy's rule based on
Dempster-Shafer framework [Murphy 1998, Murphy 1996] and Fuzzy
Inference System to form a single measure of confidence. The confidence
measure indicates whether or not the output from the self-adaptive system's
learning can be trusted over time.

The presented validation technique is applied to a neural network based
online self-adaptive system, the intelligent flight control system (IPCS). In
this application, environmental changes include system failure modes, such
as a stuck stabilator, broken aileron and/or rudder, sensor failures, etc. Even
though this case study is very specific, sound theoretical foundation of the
presented validation technique makes it generally applicable to assure a wide
range of autonomous online self-adaptive systems with embedded soft-
computing learning paradigms.

258 Chapter 10

Self-organizing neural networks, introduced by Kohonen [1988] and
modified by several others over the last twenty years, offer topology-
preserving adaptive learning capabilities. These learning capabilities can, in
theory, respond to abstractions from a much wider variety of complex data-
manifolds. The significance of this is that the type of data encountered in an
adaptive flight control system in general consists of complex data-manifolds.

A provably self-stabilizing neural network ensures that while the
adaptive system tries to achieve its central goal, the embedded neural
network may not deviate the system in an unpredictable manner towards
instability due to a dramatic change in its learning state (possibly due to a
system-failure). It is not known at this point whether a neural network of
such capabilities exists, let alone the complicated and challenging task of
proving that it is self-stabilizing in some manner for all conditions of input
data [Yerramalla 2004a, Yerramalla 2004c].

This leads us to the following set of questions:

1. Is the online neural network learning algorithm self-stabilizing in some
manner for certain data representations?

2. Is there a means to detect if the neural network is not stabilizing but
deviating towards instability (abnormal behavior)?

Online stability monitoring is employed using multiple monitors to
provide an answer to the above questions. The construction of an online
stability monitor is based on rigorous mathematical stability analysis
methodology - Lyapunov's direct method [Yerramalla 2004b]. The output
data from various monitors are fused together using Murphy's rule based on
Dempster-Shafer framework [Smets 1990] and Fuzzy Inference Engine to
form a single measure of confidence. The confidence measure indicates
whether or not the output from the neural network's learning can be trusted
over time. The complete validation scheme is shown in Fig. 10-1 on the
next page.

Run-Time Assessment of Neural Network Control Systems 259

Neural Network Tramine
1 Data Stream

•

Online Neural
Network (OLNN)

Neural Network
Monitor Values

•

1 Control Adjustments to the
Flight Cor itrol System

Dempster-Shafer

/
Monitor Values

\

^

;:i
Fuzzy Logic

Inference Engine
m

Figure 10-1. Neural Network Validation Scheme

The NASA Dryden Flight Center IPCS first generation (GENl) contains
an online learning neural network, the Dynamic Cell Structure (DCS) neural
network. The purpose of the DCS network is to learn stability and control
derivatives in real-time to augment the fault-tolerant flight control system
onboard an F-15. The DCS network, its structure, and its learning
algorithms are explained in several publications [Jorgensen 1997, Bruske
1994]. This chapter assumes the reader has an understanding of DCS
operation and a basic understanding of self-organizing neural networks.

2. RUN-TIME MONITORING AND DATA FUSION

The online learning neural network, although close to representing the
input data pattern, may fail to mirror the topology of the training data,
especially if the neurons representing topological and non-topological data
patterns are equidistant from each other. For the software validation
purpose, a single monitor may not provide sufficiently thorough
understanding of the adaptation dynamics [Yerramalla 2004a]. Any online
self-adaptive system is likely to encounter multi-dimensional datasets.

For most flight profiles in the IFCS, input datasets contain 32
dimensions. It is not practical to plot all 32 dimensions of the data over time
and manually detect network faults. Hence, a monitoring approach is
needed that can observe different aspects of the adaptation and indicate if
and when the network generates faulty representations of the presented
training data. This will be a way to detect whether the states of the adaptive
system deviate towards instability. Consequently, multiple Lyapunov-like
functions are needed to observe various aspects of the neural network to

260 Chapter 10

adequately monitor its the behavior during onUne adaptation. This is the
role that run-time monitors play in the validation methodology discussed
here [Yerramalla 2004a - Yerramalla 2004c]. The Lyapunov-like functions
selected for run-time monitoring will be briefly described.

Definition 2.1 (Monitor #7, Best Matching Unit (BMU) Error). BMU
Error is the Euclidean distance between each data element of the presented
input (training) data pattern me M d R^ and its closest neuron (node) of
the neural network, known as the BMU w^^y (m) e W cz R^.

Monitor#l= Y^W^~ ^BMU(^)\\ (10-1)
meM

Definition 2.2 (Monitor #2, Second Best Matching Unit (SBU) Error).
SBU Error is the Euclidean distance between each data element of the
presented input (training) data pattern me M d R and its second closest
neuron (node) of the neural network, known as the SBU

w SBU {m)eW CLR'' .

Monitor#2= J]\\m-WsBu(m)\\ (10.2)
meM

Definition 2.3 (Monitor #5, Neighborhood (NBR) Error). NBR Error is
the mean Euclidean distance between each data element of the presented
input (training) data pattern me M cz R and the set of neighborhood
neurons (connected nodes) of the BMU of the neural network, known as the
NBR-set w^^^^j(m.BMU) eW czR^.

Monitor#3 = Y, T^eanwn - Wrŷ^̂ ^̂ i (m) j (10.3)
meM

Definition 2.4 (Monitor #¥, Non-Neighborhood (Non-NBR) Error).
Non-NBR Error is the mean Euclidean distance between each data element
of the presented input (training) data pattern me M cz R and the set of
laterally connected, non-neighboring neurons of the BMU of the neural
network, known as the Non- NBR-set w,̂ ^̂ ^̂ ^̂ ^̂ (m,BMU) e W d R^.

Monitor#4= X ^e^^l^-'^[Non-NBR](^)l\ (10.4)
meM

These monitors provide an estimate of how well a set of associated
weights or nodes of the adaptive network are being overlaid on

Run-Time Assessment of Neural Network Control Systems 261

corresponding relative elements of the presented training data set. In other
words, the monitors indicate how well the network represents the training
data. However, when these monitors are deployed into the IFCS, it will be
complicated to infer a reasonable measure of confidence by looking at all
four monitors. Thereby, there needs to be a single confidence measure of
the DCS network. To achieve this, the monitor values from the previously
mentioned four monitors are combined using Murphy's rule based on
Dempster-Shafer framework [Murphy 1998, Murphy 1996] Mid Fuzzy
Inference System to form a single measure of confidence. The confidence
measure indicates whether or not the output from the neural network's
learning can be trusted over time.

2.1 Murphy's Rule of Combination

Dempster-Shafer theory [Smets 1990] is a general form of Bayesian
theory. Bayesian theory requires knowing all of the probability laws in
order to combine evidence and make a prediction. In spite of Bayesian
theory, which has only propositions that are known as possible and
propositions known as impossible, Dempster-Shafer theory adds
propositions that are unknown. There are many rules of combination that
are based on the Dempster-Shafer framework. In order to explain the
Murphy's rule, some basic definitions and axioms from the Dempster-Shafer
theory are needed.

Propositions of an event are called elementary propositions
{^1,̂ 2 V9^«} • These events must be exclusive. The finite set of the
elementary propositions 0 = {0^} is called the frame of discernment. The
power set 2® includes all possible propositions of interest. The belief in
propositions is expressed with a basic probability assignment function:
m : 2® —> [0,lj. The number m{0.) represents the total belief assigned to
proposition 0.. The basic probability assignment function must satisfy the
following axioms: m {A) > 0, V 6 2®, m{0) = 0 and ^^^^^ ^(^) = ^ •

Dempster proposed a rule of combination, assuming that all sources of
evidence are independent:

Since the monitors from the DCS network that are used as sources of
evidence are not independent, Dempster's rule cannot be applied. For such

262 Chapter 10

cases Murphy [1996] provides a rule that solves this problem:

m
n5 , ^0 f{^i^i hi^ i))

where f[m[A.)m[B.)) = [m{A.)m[B.)]" (0.0 < w < 1.0) . Function/is
referred to as the belief revision function. When n=\, this rule becomes
Dempster's rule.

In the monitors discussed here, each monitor tells a different error.
These errors are normalized to values between zero and one (see Section 2.3
for details), which is used as beliefs that carry the information of how bad
the learning process is of the DCS network. Therefore, from each monitor
there are two propositions E and C with their beliefs: m{E) (which is the
normalized error value) and m{C) = 1 - m{E) (which is the belief of how
confident one is or how much one should trust the learning process of the
DCS network). The final form of Murphy's rule is:

{xyY ^{X-xYiX-yr
x,ye (0,1); n e [0,1]; n = const i^^-^)

m(x,y)e (0,1)

where x and j ; are values of m(E) from two monitors.
There are many ways of combining the sources of evidence. The

following way is chosen, assuming there are k sources of evidence (with
assigned beliefs ai,a2,.--?<^A: ^ (04))-

comb(l) = a^ (10 8)
comb (/) = m{comb (i - 1), a^), / = 2,..., k

where comb{k) will give the final result expressed as a combined error
belief. Fig. 10-2 is a graphical representation of this combination. The
result that is of interest is one - comb{k), which is a measure of confidence.

If there are more than two beliefs, different orders of combining them
give different results (since associadvity does not hold for the belief revision
Sanction y). The minimum and the maximum values of comb(k) should be
obtained, i.e., to find what ordering of the beliefs will give these values. The
simplest approach to do this is to calculate comb(k) on all permutations and
determine the minimum and the maximum. However, this approach is not
efficient with running time 0{k!).

Run-Time Assessment of Neural Network Control Systems 263

Figure 10-2. Combination Method

A claim is made here that if the beHefs are ordered in increasing order,
comb(k) will give the maximum value, and if they are in decreasing order it
will give the minimum value. This reduces the running time
toO(^-log(^)).

2.2 Fuzzy Inference System

Another approach for data fusion on the DCS monitors is based on fuzzy
logic. For the system discussed here, the Mamdani model [Mamdani 1975]
is used, which is one of the most widely used fuzzy models in practice. It is
a Fuzzy Rule-based model. The rules are very simple and are based on
linguistic variables, for example: IF x is Small AND y is High THEN z is
Medium. Each input in the system is partitioned into regions. A region
corresponds to a membership function (e.g.. Small, Medium, etc.). The same
is applied to the output variables.

In our system the monitors are normalized to values between zero and
one (see Section 2.3 for details). Since the monitors are error functions,
small errors (closer to zero) mean that the DCS network state is good and
large errors (closer to one) mean that the DCS network state is bad. The first
try was with simple triangular membership functions. Later, the system was
improved with smooth functions that resulted in smoother transitions in the
output. Three regions were used to partition (Fig. 10-3) the input space into
good (with Z-shaped curve membership function), normal (with Gaussian
curve membership function), and bad (with S-shaped curve membership
function).

264 Chapter 10

Figure 10-3. Input Variable

The output, which is a fusion of all inputs, means how much confidence
or belief there is that the network has learned well. Fig. 10-4 shows the
partitioning of the output into five regions: very-low (with Z-shaped curve
membership function), low, medium, high (the last three regions with
Gaussian curve membership function) and very-high (with S-shaped curve
membership function). The lowest value, very-low, tells us that something is
going wrong with learning process of the DCS network. Similarly, the
highest value very-high means that the DCS network learning process is very
well. The defuzzification method used to obtain a numerical value is
centroid, and one example of the fuzzy rules that can result is shown in Fig.
10-5.

very
1

0.5

_S

low

^

1.

^i i i i ia iBi i i 1 •?=

r
C

0.2

1 1

medium

\A'
K^

0.4 0.6

high

vy
0.8

very

r
1

\

Figure 10-4. Output Variable

4. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is normal) and (Q-SBU-E is bad) then (confidence is veryjow) (1)
5. If (QE is bad) and (Q-NBR-E is bad) and (Q-NGN-NBR-E is normal) and (Q-SBU-E is normal) then (confidence is low) (1)
6. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is normal) and (Q-SBU-E is good) then (confidence is medium) (1)
7. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is bad) then (confidence is low) (1)
8. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is normal) then (confidence is medium) (1)
9. If (QE is bad) and (Q-NBR-E is bad) and (Q-NON-NBR-E is good) and (Q-SBU-E is good) then (confidence is medium) (1)

Figure 10-5. A Set of Fuzzy Rules Used in the Fuzzy Inference System

Run-Time Assessment of Neural Network Control Systems 265

As can be seen from Fig. 10-6 on the next page, the mesh plot of the
control surface of the fuzzy inference system is not a flat surface. For the
inputs that are used to plot this surface, when the error values (jc and y axes)
are close to zero, there is a high confidence measure (z axis). This is
followed by a smooth decrease in the confidence measure as the error values
get closer to one.

Figure 10-6. Mesh Plot of the Control Surface of the Fuzzy Inference Engine

2.3 Experimental Studies

The experimental data consists of data sets collected from an F-15 flight
simulator. The tested flight-modes consisted of seven failure modes (five
control failure modes and two surface failure modes) and two no-failure, or
nominal, modes. The studies presented in this section consist of the result
from theC^ DCS network. This network learns the stability and control
derivatives associated with pitching moments due to normal force. Four
independent variables, in addition to the three dependent C^ derivatives, are
used as inputs into the C^ DCS network.

Neural network independent variable inputs are: mach, altitude, alpha
(angle of attack), beta. The neural network dependent variable inputs are:
AC^^^, AC^^. and AC^^. The outputs used for data fusion are the four
monitor values. In each time step these values are normalized to values
between zero and one using the current maximum from each monitor as the
normalizing base. Usually this maximum is at the beginning of the learning
process.

266 Chapter 10

2.3.1 Learning During Flight-failure Mode

Fig. 10-7 shows the four monitor values as obtained in a real-time
manner for the control failure mode - locked left stabilator stuck at +J
degrees. The failure was induced into the simulator at the 600̂ ^ time frame
(corresponds to the 100* time frame for the monitor values). All of these
monitors indicate a spike in their values at the time of failure, i.e., 100* time
frame. Note that Monitors 1 and 3 show a significant spike in their values
compared to Monitors 2 and 4. This demonstrates the need for having a
multiple monitor-based validation scheme.

Monitor 1:0-BMU-E Monitor 2 0-NBR-E Monitor 3: aNON-NBR-E

100 100
timn^TTIH?

Monitor 4: aS8LI-E

100 2001

Figure 10-7. Four Monitors for Control Failure Mode

The corresponding confidence measures are obtained using the
previously described methods of data fusion and are shown in Fig. 10-8.
Fig. 10-8 on the next page shows the minimum and maximum values of the
confidence measure acquired from the method based on Murphy's rule. Fig.
10-8 also shows the difference between the maximum and minimum values.
At the time of failure (100̂ *̂ monitor time frame) the minimum and
maximum values decrease, which indicates that the neural network cannot
be trusted at that instant in time. Other useful information is indicated from
the difference between the maximum and the minimum, which is increasing
rapidly at the 100̂ ^ time frame. In Fig. 10-8 the confidence measure
obtained from the developed fuzzy inference system is shown. The
confidence measure provided by the fuzzy inference system shows similar
behavior, decreasing significantly at the 100̂ ^ time frame and meaning that
the network cannot be trusted during this time.

Run-Time Assessment of Neural Network Control Systems 267

1.5
Conridence Bounds (Murphy's Rule) Confidence Level (Fuzzy Logic)

Mm Confidence
Max Confidence
Dtfference (Max-Min)

\ \ \ \ I

100
time€)20Hz

Figure 10-8. a) Confidence Measure from Murphy's Rule; b) Confidence Measure from
Fuzzy Inference System

2.3.2 Learning During Flight No-failure Mode

The results from the four monitors during the neural network's learning
under no-failure flight-mode are shown in Fig. 10-9. All monitors during the
learning process show a steady descent with no spikes, indicating no
abnormal neural network behavior.

Monitor 1. Q-BMU-E Monitor 2. Q-NBR-E Monitor 3: Q-NON-NBR-E
- - . O.C6r

Monitof 4; 0-SBU-E

100
time«S!20Hz

Figure 10-9. Four Monitors for No-failure Mode

Fig. 10-10 shows the confidence measure obtained from fusing these
monitor values from both methods: fuzzy logic and Dempster-Shafer. From
the method based on Murphy's rule, the minimum and the maximum values
of the confidence measure are high and stay around the same value. Their
difference is very small during the entire learning process. The fuzzy
inference system shows similar results by providing a high confidence
measure.

268 Chapter 10

Confidence Bounds (Murphy's Rule)

Mm Confidence
Max Confidence
Difference (Max-Mjn)

-»c«+—*vy—^—i«~

50 100 150
time@20Hz

Confidence Uvsl (Fuzzy Logic)

50 100 150
t ime^^Hz

Figure 10-10. a) Confidence Measure from Murphy's Rule; b) Confidence Measure from
Fuzzy Inference System

SUMMARY

A novel approach for validation of soft computing systems (neural
network) embedded in safety-critical online self-adaptive systems is
presented in the form of run-time risk assessment methodology. The
approach is based on run-time operational monitoring of the neural network
and data fusion techniques for combining outputs from various monitors.
The run-time monitoring is based on the stability analysis of dynamic
systems similar, in principle, to the Lyapunov analysis. The outputs from
various monitors are fused together to form a single measure of confidence
from the data fusion techniques of Dempster-Shafer (Murphy's rule of
combination) and Fuzzy Inference System.

The developed concept of run-time monitoring and data fusion can serve
as a powerful tool for assessing risk in real-time and a complementary means
of validating on-line self-adaptive systems in cases where traditional
validation techniques fail or cannot be applied. Using the data collected
from an F-15 flight simulator, heuristic evidence is provided that supports
the prospects of using run-time monitoring and data fusion techniques to
form a run-time risk assessment methodology. This work can be viewed as a
step towards a solution to the V&V of online self-adaptive systems. This is
a complex yet very important problem facing the dependability research
community. It is believed that the application boundaries for adaptive and
intelligent systems will widen as the underlying software/system verification
and validation theory becomes better understood and derived techniques
achieve a higher level of maturity. Current work on this approach consists
of fine-tuning the fiizzy inference system (modifying rules, membership
functions) and providing a signaling system, similar to traffic control system

Run-Time Assessment of Neural Network Control Systems 269

that can warn the pilot/aircraft validation engineers of an imminent threat
due to neural network misbehavior.

REFERENCES

Bruske, Jorg and Gerald Sommer. 1994. Dynamic Cell Structures. In Proceedings of Neural
Information Processing Systems (NIPS), 497-504.

Jorgensen, Charles C. 1997. Direct Adaptive Aircraft Control Using Dynamic Cell Structure
Neural Networks. NASA Technical Memorandum 112198, NASA Ames Research
Center.

Kohonen, T. 1988. Self-Organization and Associative Memory, Second Edition, Springer-
Verlag, New York.

Mamdani, E.H. and S. Assilian. 1975. An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller. InternationalJournal of Man-Machine Studies. Vol. 7, No. 1, pp. 1-13.

Murphy, Robin R. 1998. Dempster-Shafer Theory for Sensor Fusion in Autonomous Mobile
Robots. IEEE Trans. Robotics and Automation, vol. 14, no. 2, pp. 97206.

Murphy, Robin R. 1996. Adaptive Rule of Combination for Observations Over Time.
Multisensor Fusion and Integration for Intelligent Systems (MFI96), Dec. 8-11, 1996,
pp.125-131.

Smets, Phillipe. 1990. The Combination of Evidence in the Transferable Belief Model. IEEE
Transactions on Pattern Analysis and Machine Intelligence. Vol. 12, No. 5, May 1990.

Yerramalla, Sampath; Yan Liu; Edgar Fuller; Bojan Cukic; and Srikanth Gururajan. 2004. An
Approach to V&V of Embedded Adaptive Systems. Ill NASA-Goddard /IEEE Workshop
on Formal Approaches to Agent Based Systems.

Yerramalla, Sampath; Edgar Fuller; and Bojan Cukic. 2004. A Validation Approach for
Neural Network Based Online Self-adaptive Systems. Submitted for publication at the
Special Issue of Software, Practice and Experience Journal on Experiences with Auto-
Adaptive and Reconfigurable Systems.

Yerramalla, Sampath; Yan Liu; Edgar Fuller; Bojan Cukic; and Srikanth Gururajan. 2004.
Adaptive Control Software: Can We Guarantee Safety? Submitted for publication at the
First International Workshop on Software Cybernetics.

About the Authors

Brian J. Taylor
Brian J. Taylor, a Principal Member of Research at the Institute for

Scientific Research, Inc., has been working in the area of verification and
validation of neural networks for over seven years. His work includes the
development, analysis, and verification and validation of neural network
components for F-15 adaptive flight control systems within the NASA
Dryden Flight Research Center Intelligent Flight Control System project.
He is also the Co-Principal Investigator (PI) on the NASA IV&V Facility-
funded effort for the "Development of Methodologies for the IV&V of
Neural Networks" and a technical expert on a NASA Ames Research Center
STTR-funded "A Formal Method for the Verification and Validation of
Neural Network High Assurance Systems." Mr. Taylor holds a B.S. in
Electrical Engineering, a B.S. in Computer Engineering, and a M.S. in
Electrical Engineering.

Dr. Marjorie A. Darrah
Dr. Darrah is a Principal Scientist and Visualization and Informatics

Branch Supervisor at the Institute for Scientific Research, Inc., Fairmont,
WV. She holds the position of Co-Principal Investigator (PI) on a NASA
funded effort on "Development of Methodologies for IV&V of Neural
Networks." She is Principal Investigator of the NASA Ames STTR effort,
"A Formal Method for the Verification and Validation of Neural Network
High Assurance Systems." Her responsibilities at ISR include research and
development in the areas of Neural Networks, Data Mining, Virtual Reality,
and Education. She was also a researcher for the Goddard Institute for

Run-Time Assessment of Neural Network Control Systems 271

Systems, Software and Technology Research project where she focused on
implementing innovative human machine interfaces. Before joining ISR in
2002, she was the chairperson of the Division of Natural Sciences and a
Mathematics professor at Alderson-Broaddus College, Philippi, WV. Dr.
Darrah holds a BS, MS, and PhD in Mathematics.

Dr. Laura L. Pullum
Dr. Laura Pullum, a Principal Scientist and Vice-President of Research

and Advanced Concepts at the Institute for Scientific Research, Inc., has
over 20 years of experience in system and software dependability research
and development. Dr. Pullum is the author of Software Fault Tolerance -
Techniques and Implementation and has written over 350 papers and reports.
She has performed research and development in software fault tolerance and
system integrity for NASA, the U.S. Air Force, the Naval Surface Warfare
Center, the National Science Foundation, the U.S. Army, industry, and
universities. In addition. Dr. Pullum holds a patent in this field. Her
research has ranged from invention of new techniques and approaches, to
analysis of system performance and cost, to selection of appropriate
techniques and other design assistance. Dr. Pullum holds a B.S. in Math, a
Masters in Operations Research, an MBA, and a Doctorate of Science in
Systems Engineering and Operations Research.

James T. Smith
James T. Smith, a Principal Member Research Staff at the Institute for

Scientific Research, has over 20 years experience in the development and
fielding of advanced technical systems. Currently, he is involved in a NASA
IV&V-funded effort for the development of certification guidance of neural
network-based real-time control systems. He continues to actively monitor
the pulse of emerging technologies for ISR, and has a newsletter that he
distributes. He has over twenty years of artificial intelligence-related work
experience. His prior work included design and development of expert
systems for the DARPA Pilot's Associate program, and an Artificial
Intelligence toolkit successfully used in the implementation of real-time
expert systems. Mr. Smith holds a B.S. in Mathematics/Physics, a M.Ed, in
Mathematics/Education, and a M.S. in Applied Mathematics/Computer
Science.

Spiro T. Skias
Spiro T. Skias is a Senior Project Manager at the Institute for Scientific

Research, Inc. Mr. Skias is the project manager of three neural network-
related projects: Development of Methodologies for the IV&V of Neural
Networks for the NASA IV&V Facility, the Intelligent Flight Control

272 Chapter 10

System for the NASA Dryden Flight Research center, and A Formal Method
for the Verification and Validation of Neural Network High Assurance
Systems, an STTR with ProLogic for the NASA Ames Research Center.
Prior to his role as a project manager, Mr. Skias worked as a software
engineer and computer science researcher with focus on data mining, power
plant control systems, and software architecture and engineering. He has
also honorably completed four years of military service with the United
States Navy as an Operations Specialist. Mr. Skias holds a B.S. in Computer
Science.

Dr. Bojan Cukic
Dr. Bojan Cukic is an associate professor of Computer Science and

Engineering at West Virginia University. His research interests include
software engineering for high assurance systems, fault-tolerant system
architectures, computer security and biometrics. He is a Principal
Investigator on several research projects related to verification and
validation of adaptive systems. NASA Office of Safety and Mission
Assurance awarded him the Tycho Brahe Research Excellence Award in
2004 for the research on real-time neural network monitoring techniques.
Dr. Cukic is the author of more than 100 refereed publications. He received
a B.S. in Computer Engineering from the University of Ljubljana, Slovenia,
and M.S. and Ph.D. degrees in Computer Science from the University of
Houston, TX.

Dr. Edgar J. Fuller
Dr. Edgar Fuller is an Assistant Professor in the Department of

Mathematics at West Virginia University. He received his Ph.D. from the
University of Georgia in the area of differential geometry and topology. He
currently works on applications of topology and geometry to the study of
autonomous learners, especially those in mission critical applications. His
other interests include applications of computational geometry to knot
theory, the analysis of non-deterministic systems, bioinformatics, and
mathematics education.

Sampath K. Yerramalla
Sampath Yerramalla is a Doctoral Candidate in Electrical Engineering in

the Lane Department of Computer Science and Electrical Engineering at the
West Virginia University. Yerramalla has been working in the area of neural
networks based adaptive control systems for over 5 years. His work focuses
on the development, analysis, and applications of Lyapunov based stability
techniques for verification and validation of neural networks in adaptive
systems. Yerramalla's work has been sponsored by the West Virginia

Run-Time Assessment of Neural Network Control Systems 273

research interests include control systems, artificial neural networks, fuzzy
logic, and adaptive systems. He holds a M.S. in Control Systems
Engineering.

Index

Adaptive system ix, x, 9, 13, 14, 16, 17,
18, 19,20,21,30,42,54,57, 101,
102, 103, 108,114, 115, 134,141,
142, 148, 160, 161, 226, 257, 258,
259, 268, 269

Autonomous system 88
Autonomous vehicles 88

Back-propagation 5, 57, 64, 65, 67, 71,
79, 82, 83, 85, 93, 102, 143, 169, 173,
177, 183,203,206

Best matching unit 70, 81, 103, 106, 205,
206, 207, 214, 215, 223, 224, 260

Character recognition 53, 84, 85, 86, 175
Configuration management 14, 16, 17,

23, 38, 40
Counter-propagation 64, 71, 72, 93, 143

Dynamic cell structures neural network
30, 87, 90, 103, 104, 105, 106, 108,
186, 188,189,190,191,200,204,
205, 206, 207, 208, 209, 210, 211,
212,213,214,215,216,217,218,
219, 220, 222, 223, 224, 225, 231,
232, 243, 244, 245, 259, 261, 262,
263, 264, 265

Expert systems 52, 53, 60, 61, 83, 84, 90,
95, 122, 271

Fault model 36, 37, 39, 40, 43, 44, 45
Fault tree analysis 36
Feed-forward 5, 18, 65, 66, 67, 81, 83,

87, 104, 131, 143, 147, 161, 183, 187,
214

FMEA 33, 36, 37, 39, 40, 43, 47

Hazops 35, 36
Hinton diagram 165
Hyperplane animator 167, 197

IEEE 1012-1998 13, 14, 15, 16, 21
Intelligent flight control 1, 6, 7, 10, 11,

14,15,18,19,30,37,43,46,47,58,
87, 88, 89, 90, 186, 191, 192, 204,
205, 206, 210, 211, 212, 214, 215,
216, 218, 219, 222, 223, 225, 230,
231, 242, 243, 244, 245, 246, 247,
255, 256, 257, 259, 261, 270, 271

Intelligent systems 1, 11, 52, 53, 60, 89,
94,161,268,269

Language processing 53, 84, 86
Lyapunov stability 37, 97, 98, 100, 101,

107, 108

276 Contents

Modified lifecycle 14, 23

Network selection 63, 64
Neural network architectures

Adaptive Resonance Theory 4, 79, 80,
95

Bidirectional Associative Memory 64
Boltzmann Machine 11, 64, 75, 94,

158
Dynamic Cell Structure 6, 11, 30, 87,

90, 103, 104, 105, 106, 107, 108,
186,187, 188,189, 190,191,200,
204, 205, 206, 207, 208, 209, 210,
211,212,213,214,215,216,217,
218, 219, 220, 222, 223, 224, 225,
227, 231, 232, 243, 244, 245, 256,
259, 261, 262, 263, 264, 265, 269

Hopfield 57
multilayer perceptron 5, 6, 22, 43, 44,

45,46, 115, 131, 182,200,206
radial basis function 5, 22, 115, 131,

173, 200, 206, 207, 227
Recirculation 82, 83
Self-Organizing Map 4, 6, 22, 64, 69,

81,97, 103, 115, 170,205,214
Sigma-Pi 102
Spatio-temporal Pattern Recognition

64,78
Neural network design 14, 16, 17, 21, 23,

29, 40, 63, 67, 109, 128, 146, 163
Neural network testing 14, 27

Online learning neural network 2, 9, 19,
27, 97, 104, 106, 112, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157,
192,217,218,259

Operational monitors 16, 20, 21, 23, 41,
42, 46, 257, 259, 260, 268

Pre-trained neural network 2, 6, 17, 21,
58,59,90,142, 143, 145, 147,216,
225,231,232

Requirements
control 19
knowledge 19, 20, 21
software 14, 18, 19,20,21,36

system 14, 17,18,23,42,111,118,
199, 201

Risk
assessment 33, 36, 39, 42, 43, 48, 49,

257, 268
management 35, 36, 38, 39, 40
technical 36, 38, 40, 42

Risk and hazard analysis 26, 33, 35, 36,
37,39,40,41,42

Rule extraction 21, 27, 29, 112, 122, 159,
161, 190, 199, 200, 201, 202, 203,
204, 206, 207, 208, 209, 210, 212,
213, 214, 215, 223, 224, 225, 226, 227

Rule initialization 226
Rule insertion 21, 226

Safety- and mission-critical x, 1,5, 7, 8,
9, 10, 13, 14, 16,20,26,37,38,41,
48,59,61,92, 101, 107, 109, 110,
114, 125, 126, 131, 134, 150, 160,
201, 204, 215, 225, 227, 229, 268

Second best matching unit 70, 205, 214,
215,224,260

Signal processing 65, 75, 86, 87, 95, 233
Stability 6, 22, 39, 40, 41, 57, 58, 74, 87,

97,98,99,100,101,103,104,107,
108,118, 120,134, 135,136,192,
193, 200, 204, 210, 218, 243, 244,
249, 257, 258, 259, 265, 268

Test data generation 29, 37, 229, 230,
231,255

Test generation 120, 229, 231, 232, 251
Trajectory diagram 168

Vector quantization 64, 69, 70, 72, 143
Verification and validation i, iii, ix, x, 1,

5,7,8,9,10,11,13,14,15,16, 17,
18, 19, 20, 21, 22, 23, 26, 30, 33, 35,
36, 37, 39, 40, 41, 42, 48, 51, 53, 55,
59, 60, 62, 63, 66, 67, 69, 70, 72, 74,
75,76,78,80,81,83,84,85,87,88,
89,90,91,92,93,98, 101, 107, 108,
109, 110, 111, 112, 118, 125, 127,
131, 133, 134, 148, 152, 153, 158,
160, 161, 163, 173, 185, 190, 191,
196, 197, 199, 200, 201, 204, 205,
206, 212, 215, 216, 218, 220, 222,

Contents 277

225, 226, 227, 230, 231, 244, 247, 120, 121, 123, 125, 126, 127, 131,
249, 250, 254, 255, 268, 269, 270, 272 134, 135, 136, 141, 142, 143, 144,
validation ix, x, xi, 1, 7, 8, 9, 10, 12, 145, 146, 148, 149, 150, 151, 157,

13, 14, 17, 31, 51, 53, 93, 98, 108, 158, 160, 161, 163, 193, 197, 199,
116, 127, 128, 137, 138, 139, 140, 201, 212, 216, 223, 227, 230, 268,
141, 144, 150, 160, 161, 174, 209, 270, 272
257, 258, 259, 260, 266, 268, 269, Voronoi diagram 188, 189
270 Voronoi regions 205, 209, 212, 215, 216,

verification i, iii, ix, x, xi, 1, 5, 7, 8, 218, 220, 222
10, 11, 13,14, 15, 16,25,30,33,
48,53,107,108, 109, 110, 112,
113, 114, 115, 116, 117,118,119,

	cover.pdf
	000.pdf
	000i.pdf
	000ii.pdf
	000iii.pdf
	000vi.pdf
	000vii.pdf
	000viii.pdf
	000x.pdf
	000xi.pdf
	nlReader.dll@BookID=155918&FileName=Page_1.pdf
	nlReader.dll@BookID=155918&FileName=Page_2.pdf
	nlReader.dll@BookID=155918&FileName=Page_3.pdf
	nlReader.dll@BookID=155918&FileName=Page_4.pdf
	nlReader.dll@BookID=155918&FileName=Page_5.pdf
	nlReader.dll@BookID=155918&FileName=Page_6.pdf
	nlReader.dll@BookID=155918&FileName=Page_7.pdf
	nlReader.dll@BookID=155918&FileName=Page_8.pdf
	nlReader.dll@BookID=155918&FileName=Page_9.pdf
	nlReader.dll@BookID=155918&FileName=Page_10.pdf
	nlReader.dll@BookID=155918&FileName=Page_11.pdf
	nlReader.dll@BookID=155918&FileName=Page_12.pdf
	nlReader.dll@BookID=155918&FileName=Page_13.pdf
	nlReader.dll@BookID=155918&FileName=Page_14.pdf
	nlReader.dll@BookID=155918&FileName=Page_15.pdf
	nlReader.dll@BookID=155918&FileName=Page_16.pdf
	nlReader.dll@BookID=155918&FileName=Page_17.pdf
	nlReader.dll@BookID=155918&FileName=Page_18.pdf
	nlReader.dll@BookID=155918&FileName=Page_19.pdf
	nlReader.dll@BookID=155918&FileName=Page_20.pdf
	nlReader.dll@BookID=155918&FileName=Page_21.pdf
	nlReader.dll@BookID=155918&FileName=Page_22.pdf
	nlReader.dll@BookID=155918&FileName=Page_23.pdf
	nlReader.dll@BookID=155918&FileName=Page_24.pdf
	nlReader.dll@BookID=155918&FileName=Page_25.pdf
	nlReader.dll@BookID=155918&FileName=Page_26.pdf
	nlReader.dll@BookID=155918&FileName=Page_27.pdf
	nlReader.dll@BookID=155918&FileName=Page_28.pdf
	nlReader.dll@BookID=155918&FileName=Page_29.pdf
	nlReader.dll@BookID=155918&FileName=Page_30.pdf
	nlReader.dll@BookID=155918&FileName=Page_31.pdf
	nlReader.dll@BookID=155918&FileName=Page_33.pdf
	nlReader.dll@BookID=155918&FileName=Page_34.pdf
	nlReader.dll@BookID=155918&FileName=Page_35.pdf
	nlReader.dll@BookID=155918&FileName=Page_36.pdf
	nlReader.dll@BookID=155918&FileName=Page_37.pdf
	nlReader.dll@BookID=155918&FileName=Page_38.pdf
	nlReader.dll@BookID=155918&FileName=Page_39.pdf
	nlReader.dll@BookID=155918&FileName=Page_40.pdf
	nlReader.dll@BookID=155918&FileName=Page_41.pdf
	nlReader.dll@BookID=155918&FileName=Page_42.pdf
	nlReader.dll@BookID=155918&FileName=Page_43.pdf
	nlReader.dll@BookID=155918&FileName=Page_44.pdf
	nlReader.dll@BookID=155918&FileName=Page_45.pdf
	nlReader.dll@BookID=155918&FileName=Page_46.pdf
	nlReader.dll@BookID=155918&FileName=Page_47.pdf
	nlReader.dll@BookID=155918&FileName=Page_48.pdf
	nlReader.dll@BookID=155918&FileName=Page_49.pdf
	nlReader.dll@BookID=155918&FileName=Page_51.pdf
	nlReader.dll@BookID=155918&FileName=Page_52.pdf
	nlReader.dll@BookID=155918&FileName=Page_53.pdf
	nlReader.dll@BookID=155918&FileName=Page_54.pdf
	nlReader.dll@BookID=155918&FileName=Page_55.pdf
	nlReader.dll@BookID=155918&FileName=Page_56.pdf
	nlReader.dll@BookID=155918&FileName=Page_57.pdf
	nlReader.dll@BookID=155918&FileName=Page_58.pdf
	nlReader.dll@BookID=155918&FileName=Page_59.pdf
	nlReader.dll@BookID=155918&FileName=Page_60.pdf
	nlReader.dll@BookID=155918&FileName=Page_61.pdf
	nlReader.dll@BookID=155918&FileName=Page_62.pdf
	nlReader.dll@BookID=155918&FileName=Page_63.pdf
	nlReader.dll@BookID=155918&FileName=Page_64.pdf
	nlReader.dll@BookID=155918&FileName=Page_65.pdf
	nlReader.dll@BookID=155918&FileName=Page_66.pdf
	nlReader.dll@BookID=155918&FileName=Page_67.pdf
	nlReader.dll@BookID=155918&FileName=Page_68.pdf
	nlReader.dll@BookID=155918&FileName=Page_69.pdf
	nlReader.dll@BookID=155918&FileName=Page_70.pdf
	nlReader.dll@BookID=155918&FileName=Page_71.pdf
	nlReader.dll@BookID=155918&FileName=Page_72.pdf
	nlReader.dll@BookID=155918&FileName=Page_73.pdf
	nlReader.dll@BookID=155918&FileName=Page_74.pdf
	nlReader.dll@BookID=155918&FileName=Page_75.pdf
	nlReader.dll@BookID=155918&FileName=Page_76.pdf
	nlReader.dll@BookID=155918&FileName=Page_77.pdf
	nlReader.dll@BookID=155918&FileName=Page_78.pdf
	nlReader.dll@BookID=155918&FileName=Page_79.pdf
	nlReader.dll@BookID=155918&FileName=Page_80.pdf
	nlReader.dll@BookID=155918&FileName=Page_81.pdf
	nlReader.dll@BookID=155918&FileName=Page_82.pdf
	nlReader.dll@BookID=155918&FileName=Page_83.pdf
	nlReader.dll@BookID=155918&FileName=Page_84.pdf
	nlReader.dll@BookID=155918&FileName=Page_85.pdf
	nlReader.dll@BookID=155918&FileName=Page_86.pdf
	nlReader.dll@BookID=155918&FileName=Page_87.pdf
	nlReader.dll@BookID=155918&FileName=Page_88.pdf
	nlReader.dll@BookID=155918&FileName=Page_89.pdf
	nlReader.dll@BookID=155918&FileName=Page_90.pdf
	nlReader.dll@BookID=155918&FileName=Page_91.pdf
	nlReader.dll@BookID=155918&FileName=Page_92.pdf
	nlReader.dll@BookID=155918&FileName=Page_93.pdf
	nlReader.dll@BookID=155918&FileName=Page_94.pdf
	nlReader.dll@BookID=155918&FileName=Page_95.pdf
	nlReader.dll@BookID=155918&FileName=Page_97.pdf
	nlReader.dll@BookID=155918&FileName=Page_98.pdf
	nlReader.dll@BookID=155918&FileName=Page_99.pdf
	nlReader.dll@BookID=155918&FileName=Page_100.pdf
	nlReader.dll@BookID=155918&FileName=Page_101.pdf
	nlReader.dll@BookID=155918&FileName=Page_102.pdf
	nlReader.dll@BookID=155918&FileName=Page_103.pdf
	nlReader.dll@BookID=155918&FileName=Page_104.pdf
	nlReader.dll@BookID=155918&FileName=Page_105.pdf
	nlReader.dll@BookID=155918&FileName=Page_106.pdf
	nlReader.dll@BookID=155918&FileName=Page_107.pdf
	nlReader.dll@BookID=155918&FileName=Page_108.pdf
	nlReader.dll@BookID=155918&FileName=Page_109.pdf
	nlReader.dll@BookID=155918&FileName=Page_110.pdf
	nlReader.dll@BookID=155918&FileName=Page_111.pdf
	nlReader.dll@BookID=155918&FileName=Page_112.pdf
	nlReader.dll@BookID=155918&FileName=Page_113.pdf
	nlReader.dll@BookID=155918&FileName=Page_114.pdf
	nlReader.dll@BookID=155918&FileName=Page_115.pdf
	nlReader.dll@BookID=155918&FileName=Page_116.pdf
	nlReader.dll@BookID=155918&FileName=Page_117.pdf
	nlReader.dll@BookID=155918&FileName=Page_118.pdf
	nlReader.dll@BookID=155918&FileName=Page_119.pdf
	nlReader.dll@BookID=155918&FileName=Page_120.pdf
	nlReader.dll@BookID=155918&FileName=Page_121.pdf
	nlReader.dll@BookID=155918&FileName=Page_122.pdf
	nlReader.dll@BookID=155918&FileName=Page_123.pdf
	nlReader.dll@BookID=155918&FileName=Page_124.pdf
	nlReader.dll@BookID=155918&FileName=Page_125.pdf
	nlReader.dll@BookID=155918&FileName=Page_126.pdf
	nlReader.dll@BookID=155918&FileName=Page_127.pdf
	nlReader.dll@BookID=155918&FileName=Page_128.pdf
	nlReader.dll@BookID=155918&FileName=Page_129.pdf
	nlReader.dll@BookID=155918&FileName=Page_130.pdf
	nlReader.dll@BookID=155918&FileName=Page_131.pdf
	nlReader.dll@BookID=155918&FileName=Page_132.pdf
	nlReader.dll@BookID=155918&FileName=Page_133.pdf
	nlReader.dll@BookID=155918&FileName=Page_134.pdf
	nlReader.dll@BookID=155918&FileName=Page_135.pdf
	nlReader.dll@BookID=155918&FileName=Page_136.pdf
	nlReader.dll@BookID=155918&FileName=Page_137.pdf
	nlReader.dll@BookID=155918&FileName=Page_138.pdf
	nlReader.dll@BookID=155918&FileName=Page_139.pdf
	nlReader.dll@BookID=155918&FileName=Page_140.pdf
	nlReader.dll@BookID=155918&FileName=Page_141.pdf
	nlReader.dll@BookID=155918&FileName=Page_142.pdf
	nlReader.dll@BookID=155918&FileName=Page_143.pdf
	nlReader.dll@BookID=155918&FileName=Page_144.pdf
	nlReader.dll@BookID=155918&FileName=Page_145.pdf
	nlReader.dll@BookID=155918&FileName=Page_146.pdf
	nlReader.dll@BookID=155918&FileName=Page_147.pdf
	nlReader.dll@BookID=155918&FileName=Page_148.pdf
	nlReader.dll@BookID=155918&FileName=Page_149.pdf
	nlReader.dll@BookID=155918&FileName=Page_150.pdf
	nlReader.dll@BookID=155918&FileName=Page_151.pdf
	nlReader.dll@BookID=155918&FileName=Page_152.pdf
	nlReader.dll@BookID=155918&FileName=Page_153.pdf
	nlReader.dll@BookID=155918&FileName=Page_154.pdf
	nlReader.dll@BookID=155918&FileName=Page_155.pdf
	nlReader.dll@BookID=155918&FileName=Page_156.pdf
	nlReader.dll@BookID=155918&FileName=Page_157.pdf
	nlReader.dll@BookID=155918&FileName=Page_158.pdf
	nlReader.dll@BookID=155918&FileName=Page_159.pdf
	nlReader.dll@BookID=155918&FileName=Page_160.pdf
	nlReader.dll@BookID=155918&FileName=Page_161.pdf
	nlReader.dll@BookID=155918&FileName=Page_163.pdf
	nlReader.dll@BookID=155918&FileName=Page_164.pdf
	nlReader.dll@BookID=155918&FileName=Page_165.pdf
	nlReader.dll@BookID=155918&FileName=Page_166.pdf
	nlReader.dll@BookID=155918&FileName=Page_167.pdf
	nlReader.dll@BookID=155918&FileName=Page_168.pdf
	nlReader.dll@BookID=155918&FileName=Page_169.pdf
	nlReader.dll@BookID=155918&FileName=Page_170.pdf
	nlReader.dll@BookID=155918&FileName=Page_171.pdf
	nlReader.dll@BookID=155918&FileName=Page_172.pdf
	nlReader.dll@BookID=155918&FileName=Page_173.pdf
	nlReader.dll@BookID=155918&FileName=Page_174.pdf
	nlReader.dll@BookID=155918&FileName=Page_175.pdf
	nlReader.dll@BookID=155918&FileName=Page_176.pdf
	nlReader.dll@BookID=155918&FileName=Page_177.pdf
	nlReader.dll@BookID=155918&FileName=Page_178.pdf
	nlReader.dll@BookID=155918&FileName=Page_179.pdf
	nlReader.dll@BookID=155918&FileName=Page_180.pdf
	nlReader.dll@BookID=155918&FileName=Page_181.pdf
	nlReader.dll@BookID=155918&FileName=Page_182.pdf
	nlReader.dll@BookID=155918&FileName=Page_183.pdf
	nlReader.dll@BookID=155918&FileName=Page_184.pdf
	nlReader.dll@BookID=155918&FileName=Page_185.pdf
	nlReader.dll@BookID=155918&FileName=Page_186.pdf
	nlReader.dll@BookID=155918&FileName=Page_187.pdf
	nlReader.dll@BookID=155918&FileName=Page_188.pdf
	nlReader.dll@BookID=155918&FileName=Page_189.pdf
	nlReader.dll@BookID=155918&FileName=Page_190.pdf
	nlReader.dll@BookID=155918&FileName=Page_191.pdf
	nlReader.dll@BookID=155918&FileName=Page_192.pdf
	nlReader.dll@BookID=155918&FileName=Page_193.pdf
	nlReader.dll@BookID=155918&FileName=Page_194.pdf
	nlReader.dll@BookID=155918&FileName=Page_195.pdf
	nlReader.dll@BookID=155918&FileName=Page_196.pdf
	nlReader.dll@BookID=155918&FileName=Page_197.pdf
	nlReader.dll@BookID=155918&FileName=Page_199.pdf
	nlReader.dll@BookID=155918&FileName=Page_200.pdf
	nlReader.dll@BookID=155918&FileName=Page_201.pdf
	nlReader.dll@BookID=155918&FileName=Page_202.pdf
	nlReader.dll@BookID=155918&FileName=Page_203.pdf
	nlReader.dll@BookID=155918&FileName=Page_204.pdf
	nlReader.dll@BookID=155918&FileName=Page_205.pdf
	nlReader.dll@BookID=155918&FileName=Page_206.pdf
	nlReader.dll@BookID=155918&FileName=Page_207.pdf
	nlReader.dll@BookID=155918&FileName=Page_208.pdf
	nlReader.dll@BookID=155918&FileName=Page_209.pdf
	nlReader.dll@BookID=155918&FileName=Page_210.pdf
	nlReader.dll@BookID=155918&FileName=Page_211.pdf
	nlReader.dll@BookID=155918&FileName=Page_212.pdf
	nlReader.dll@BookID=155918&FileName=Page_213.pdf
	nlReader.dll@BookID=155918&FileName=Page_214.pdf
	nlReader.dll@BookID=155918&FileName=Page_215.pdf
	nlReader.dll@BookID=155918&FileName=Page_216.pdf
	nlReader.dll@BookID=155918&FileName=Page_217.pdf
	nlReader.dll@BookID=155918&FileName=Page_218.pdf
	nlReader.dll@BookID=155918&FileName=Page_219.pdf
	nlReader.dll@BookID=155918&FileName=Page_220.pdf
	nlReader.dll@BookID=155918&FileName=Page_221.pdf
	nlReader.dll@BookID=155918&FileName=Page_222.pdf
	nlReader.dll@BookID=155918&FileName=Page_223.pdf
	nlReader.dll@BookID=155918&FileName=Page_224.pdf
	nlReader.dll@BookID=155918&FileName=Page_225.pdf
	nlReader.dll@BookID=155918&FileName=Page_226.pdf
	nlReader.dll@BookID=155918&FileName=Page_227.pdf
	nlReader.dll@BookID=155918&FileName=Page_229.pdf
	nlReader.dll@BookID=155918&FileName=Page_230.pdf
	nlReader.dll@BookID=155918&FileName=Page_231.pdf
	nlReader.dll@BookID=155918&FileName=Page_232.pdf
	nlReader.dll@BookID=155918&FileName=Page_233.pdf
	nlReader.dll@BookID=155918&FileName=Page_234.pdf
	nlReader.dll@BookID=155918&FileName=Page_235.pdf
	nlReader.dll@BookID=155918&FileName=Page_236.pdf
	nlReader.dll@BookID=155918&FileName=Page_237.pdf
	nlReader.dll@BookID=155918&FileName=Page_238.pdf
	nlReader.dll@BookID=155918&FileName=Page_239.pdf
	nlReader.dll@BookID=155918&FileName=Page_240.pdf
	nlReader.dll@BookID=155918&FileName=Page_241.pdf
	nlReader.dll@BookID=155918&FileName=Page_242.pdf
	nlReader.dll@BookID=155918&FileName=Page_243.pdf
	nlReader.dll@BookID=155918&FileName=Page_244.pdf
	nlReader.dll@BookID=155918&FileName=Page_245.pdf
	nlReader.dll@BookID=155918&FileName=Page_246.pdf
	nlReader.dll@BookID=155918&FileName=Page_247.pdf
	nlReader.dll@BookID=155918&FileName=Page_248.pdf
	nlReader.dll@BookID=155918&FileName=Page_249.pdf
	nlReader.dll@BookID=155918&FileName=Page_250.pdf
	nlReader.dll@BookID=155918&FileName=Page_251.pdf
	nlReader.dll@BookID=155918&FileName=Page_252.pdf
	nlReader.dll@BookID=155918&FileName=Page_253.pdf
	nlReader.dll@BookID=155918&FileName=Page_254.pdf
	nlReader.dll@BookID=155918&FileName=Page_255.pdf
	nlReader.dll@BookID=155918&FileName=Page_256.pdf
	nlReader.dll@BookID=155918&FileName=Page_257.pdf
	nlReader.dll@BookID=155918&FileName=Page_258.pdf
	nlReader.dll@BookID=155918&FileName=Page_259.pdf
	nlReader.dll@BookID=155918&FileName=Page_260.pdf
	nlReader.dll@BookID=155918&FileName=Page_261.pdf
	nlReader.dll@BookID=155918&FileName=Page_262.pdf
	nlReader.dll@BookID=155918&FileName=Page_263.pdf
	nlReader.dll@BookID=155918&FileName=Page_264.pdf
	nlReader.dll@BookID=155918&FileName=Page_265.pdf
	nlReader.dll@BookID=155918&FileName=Page_266.pdf
	nlReader.dll@BookID=155918&FileName=Page_267.pdf
	nlReader.dll@BookID=155918&FileName=Page_268.pdf
	nlReader.dll@BookID=155918&FileName=Page_269.pdf
	nlReader.dll@BookID=155918&FileName=Page_270.pdf
	nlReader.dll@BookID=155918&FileName=Page_271.pdf
	nlReader.dll@BookID=155918&FileName=Page_272.pdf
	nlReader.dll@BookID=155918&FileName=Page_273.pdf
	nlReader.dll@BookID=155918&FileName=Page_275.pdf
	nlReader.dll@BookID=155918&FileName=Page_276.pdf
	nlReader.dll@BookID=155918&FileName=Page_277.pdf

